• 제목/요약/키워드: Exhaust gas storage system

검색결과 24건 처리시간 0.029초

Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility

  • Buffa, P.;Giardina, M.;Prete, G.;De Ruvo, L.
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1464-1478
    • /
    • 2021
  • Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic application allow to show that Fuzzy Risk Priority Number is able to enhance the focus of risk assessments and to improve the safety of complex and innovative systems such as those under consideration.

MCFC 배기가스를 이용하는 순산소연소 $CO_2$ 회수형 발전시스템의 특성과 경제성 평가 (Characteristics and Economic Evaluation of a CO2-Capturing Repowering System with Oxy-Fuel Combustion for Utilizing Exhaust Gas of MCFC)

  • 박병식;이영덕;안국영;정현일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2940-2945
    • /
    • 2008
  • The scale of 2.4 MW MCFC was taken to construct a high-efficiency and economical power generation system without CO2 emission into the atmosphere for utilizing its exhaust gas. The conventional steam turbine power generation system (STGS) was evaluated and the net generated power (NGP) was estimated to be only 133 kW and the STGS is not economically feasible. A CO2-caputuring repowering system was proposed, where low temperature steam (LTS) produced at HRSG by using exhaust gas from MCFC is utilized as a main working fluid of a gas turbine, and the temperature of LTS was raised by combusting fuel in a combustor by using pure oxygen, not the air. It has been shown that NGP of the proposed system is 264 kW, and CO2 reduction amount is 608 t-CO2/y, compared to 306 t-CO2/y of STGS. The CO2 reduction cost was estimated to be negligible small, even when the costs of oxygen production and CO2 liquefaction facilities etc. were taken into account.

  • PDF

온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성 (Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses)

  • 최병철;이정현
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.

한국형발사체 3단 터빈배기부 개념설계 (Conceptual Design of Turbine Exhaust System for 3rd stage of Launch Vehicle)

  • 신동순;김경석;한상엽;방정석;김현웅;조동혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1068-1071
    • /
    • 2017
  • 3단 터빈배기부 구성은 터빈 플랜지, 열교환기, 배기덕트와 추력노즐로 이루어진다. 냉가스 가압 방식에 비하여 열교환기 가압 방식을 사용함으로서 추진제탱크 가압을 위한 헬륨가스 자체 무게와 저장 탱크 무게가 감소하는 장점이 있기 때문에 발사체에 열교환기를 사용한다. 가스발생기는 추진제 연료과농 조건에서 연소가 이루어지며, 연소가스 중에 그을음이 많이 포함되어 있기 때문에 열교환 효율이 감소하는 것을 고려하여 열교환기를 설계해야 한다. 본 논문에서는 터빈배기부 구성품 배치, 열교환기 내부 구조 및 제작성을 고려한 설계기법, 기 설계된 노즐 설계를 바탕으로 3단 터빈배기부 재 노즐 설계 형상에 대한 장점을 기술하였다.

  • PDF

ITER 사업의 삼중수소 연료주기 기술 (Tritium Fuel Cycle Technology of ITER Project)

  • 윤세훈;장민호;강현구;김창석;조승연;정기정;정흥석;송규민
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.56-64
    • /
    • 2012
  • The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.

순산소 연소용 축열시스템 내에서의 열 유동 수치해석 (A NUMERICAL STUDY ON THE HEAT AND FLUID FLOW IN A REGENERATIVE OXY-FUEL COMBUSTION SYSTEM)

  • 강관구;홍성국;노동순;유홍선
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2013
  • A pure oxygen combustion technology is crucial in Carbon Capture and Storage (CCS) technology especially in capturing of $CO_2$, where CCS will reduce 9 $GtCO_2$ by 2050, which is 19% of the total $CO_2$ reduction amount. To make pure oxygen combustion feasible, a regenerative system is required to enhance the efficiency of pure oxygen combustion system. However, an existing air combustion technology is not directly applicable due to the absence of nitrogen that occupies the 78% of air. This study, therefore, investigates the heat and fluid flow in a regenerative system for pure oxygen combustion by using commercial CFD software, FLUENT. Our regenerative system is composed of aluminium packed spheres. The effect of the amount of packed spheres in regenerator and the effect of presence or absence of a bypass of exhaust gas are investigated. The more thermal mass in regenerator makes the steady-state time longer and temperature variation between heating and regenerating cycle smaller. In the case of absence of bypass, the regenerator saturates because of enthalpy imbalance between exhaust gas and oxygen. We find that 40% of exhaust gas is to be bypassed to prevent the saturation of regenerator.

디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능 (Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine)

  • 박철웅;김창기;최영;강건용
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

A Study on the Operation Method of Photovoltaic/Diesel Hybrid Generating System

  • Park, Jae-Shik;So, Myung-Ok;Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.309-314
    • /
    • 2004
  • The exhaust gas emission from marine diesel engines is one of the major environmental issues. The authors focus the use of photovoltaic energy for the electric power system on marine ships. This paper proposes an operation method of a photovoltaic/diesel hybrid generating system for a small ship in consideration of the fluctuating photovoltaic power due to solar radiation. The aim of the proposed operation method is to minimize the fuel consumption and storage capacity of the battery. The validity of the proposed control method is shown by the numerical simulation based on the experimental data of the photovoltaic system.

Drop Tube Furnace에서 석탄의 순산소 연소 특성 (A Study on the Oxy-Combustion of the Coal in Drop Tube Furnace)

  • 노선아;윤진한;이정규;길상인;민태진;김상복;박인용;한방우;김진태
    • 청정기술
    • /
    • 제27권4호
    • /
    • pp.367-371
    • /
    • 2021
  • 순산소 석탄 화력 발전 시스템은 CO2 가스 회수 및 저장 기술(CCS: carbon capture & storage)의 하나로 순산소와 재순환된 연소가스를 이용하여 석탄 연소를 수행하는 기술이다. 이는 이산화탄소와 질소가 혼합된 배출 가스를 생산하는 기존의 공기 연소 시스템과 달리 공기 중의 산소를 먼저 분리하여 생산된 순산소와 재순환된 연소 가스를 이용하여 석탄을 연소하면 이산화탄소와 질소를 분리하는 후처리 공정 없이 이산화탄소만으로 이루어진 배출 가스를 생성하여 이의 저장을 용이하게 하는 기술이다. 본 연구에서는 O2/CO2 혼합 모의 가스를 이용하여 순산소 연소 시 발생되는 대기오염물질인 NO, SO2의 생성 특성을 살펴보았다. 반응 온도를 900 ℃ ~ 1200 ℃, 산소 분율을 30% ~ 50%로 변화시키면서 실험한 결과 생성 가스 내 NO 및 SO2의 농도는 반응 온도와 산소 분율이 증가할수록 증가하는 현상을 나타내었으며 CO2의 분율도 증가하는 현상을 나타내었다. 순산소 연소에서 30% O2/CO2를 이용한 연소와 air 조건인 21% O2/N2 연소에서 NO 발생을 비교한 결과 양쪽 모두 반응 온도에 따라서 NO 발생이 증가하게 되며 순산소 연소 조건에서 air 연소에 비하여 약 40 ~ 80 ppm까지 NO 발생이 낮아지는 현상을 나타내었다.

Modeling of a Compressed Air Energy Electrification by Using Induction Generator Based on Field Oriented Control Principle

  • Vongmanee, Varin;Monyakul, Veerapol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1511-1519
    • /
    • 2014
  • The objective of this paper is to propose a modelling of a small compressed air energy storage system, which drives an induction generator based on a field-oriented control (FOC) principle for a renewable power generation. The proposed system is a hybrid technology of energy storage and electrification, which is developed to use as a small scale of renewable energy power plant. The energy will be transferred from the renewable energy resource to the compressed air energy by reciprocating air compressor to be stored in a pressurized vessel. The energy storage system uses a small compressed air energy storage system, developed as a small unit and installed above ground to avoid site limitation as same as the conventional CAES does. Therefore, it is suitable to be placed at any location. The system is operated in low pressure not more than 15 bar, so, it easy to available component in country and inexpensive. The power generation uses a variable speed induction generator (IG). The relationship of pressure and air flow of the compressed air, which varies continuously during the discharge of compressed air to drive the generator, is considered as a control command. As a result, the generator generates power in wide speed range. Unlike the conventional CAES that used gas turbine, this system does not have any combustion units. Thus, the system does not burn fuel and exhaust pollution. This paper expresses the modelling, thermodynamic analysis simulation and experiment to obtain the characteristic and performance of a new concept of a small compressed air energy storage power plant, which can be helpful in system designing of renewable energy electrification. The system was tested under a range of expansion pressure ratios in order to determine its characteristics and performance. The efficiency of expansion air of 49.34% is calculated, while the efficiency of generator of 60.85% is examined. The overall efficiency of system of approximately 30% is also investigated.