• Title/Summary/Keyword: Exhaust facility

Search Result 126, Processing Time 0.031 seconds

Experimental Study on Combined Ocean Thermal Energy Conversion with Waste Heat of Power Plant

  • Jung, Hoon;Jo, Jongyoung;Chang, Junsung;Lee, Sanghyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • This work is experimental study of 10 kW specialized Combined Ocean Thermal Energy Conversion. We propose a C-OTEC technology that directly uses exhaust thermal energy from power station condensers to heat the working fluid (R134a), and tests the feasibility of such power station by designing, manufacturing, installing, and operating a 10 kW-pilot facility. Power generation status was monitored by using exhaust thermal energy from an existing power plant located on the east coast of the Korean peninsula, heat exchange with 300 kW of heat capacity, and a turbine, which can exceed enthalpy efficiency of 45%. Output of 8.5 kW at efficiency of 3.5% was monitored when the condenser temperature and seawater temperature are $29^{\circ}C$ and $7.5^{\circ}C$, respectively. The evaluation of the impact of large-capacity C-OTEC technology on power station confirmed the increased value of the technology on existing power generating equipment by improving output value and reducing hot waste water. Through the research result, the technical possibility of C-OTEC has been confirmed, and it is being conducted at 200 kW-class to gain economic feasibility. Based on the results, authors present an empirical study result on the 200 kW C-OTEC design and review the impact on power plant.

A Study on the Standard for Installation of Carbon Monoxide Detector in a Building (건축물내 일산화탄소 경보기 설치기준에 관한 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the last five years, 36 people died and 79 were wounded because of carbon monoxide poisoning accident. A CO poisoning accident is higher than any other gas accident in the rate of deaths/incidents. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread mechanism of CO gas released from leakage hole of exhaust tube was analyzed by concentration measuring test. A CO gas leaked form exhaust tube in a building was the highest concentrated near the ceiling. CO alarm sets installation test confirmed that the alarm sets near the ceiling operated first, and the bottom and middle sets operated after $30{\sim}40$ minutes. Through these experiments, the reasonable installation location of CO alarm was made certain and suggested.

  • PDF

A Study on Performance Characteristics of Second Throat Exhaust Diffuser with Back Pressure (고공환경 모사용 이차목 디퓨저의 배압에 따른 성능 특성)

  • Kim, Wan Chan;Yu, I Sang;Kim, Tae Woan;Park, Jin Soo;Ko, Young Sung;Kim, Min Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.563-570
    • /
    • 2017
  • Experimental and numerical studies were performed to investigate the performance and internal flow characteristics of a supersonic second throat exhaust diffuser (STED) with back pressure ($P_a$). An ejector system was used to vary the back pressure ($P_a$) conditions. The operating gas for the STED and the ejector was high pressure nitrogen at room temperature. When the back pressure ($P_a$) at a constant nozzle inlet pressure $P_0$) decreases, the pressure recovery location moves downstream. If the pressure ratio $P_0/P_a$) is the same, even if the nozzle inlet pressures $P_0$) are different, the diffuser's internal flow pattern and starting pressure ratio ($(P_0/P_a)_{st}$) are almost the same.

Low-Carbon Information Management of Street Lamps and Street Trees Using GIS (GIS를 이용한 가로등 및 가로수의 저탄소 정보 관리)

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Sub
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • Diverse improvement projects such as replacing street lamps with LED, street trees, etc are currently in progress in Korea to reduce greenhouse gas so as to cope with change in climate. However, the effect of climate change policy is not exactly analyzed, because exhaust quantity and absorption quantity of greenhouse gas of the target street lamp and street trees are not arranged as information. Thus, this study studied the method to systematically manage low carbon related information of urban facilities by using GIS. It was found that low carbon information of the urban facilities is necessary to exactly analyze effect of climate change policy and the method to calculate carbon exhaust quantity and absorption quantity of each facilities should be established to build exact low carbon information of urban facilities. Further, it was found that the visualization of information related to low carbon of street lamp and street trees by using GIS easily and visually grasps and systematically controls the effect of policy coping with change in climate than the existing numeral data of exhaust quantity and absorption quantity of greenhouse gas.

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

Development of Volatile Organic Compound Pretreatment Device for Removing Exhaust Gas from Display Manufacturing Process (Display 제조공정 배출가스 처리를 위한 휘발성 유기화합물 전처리 장치 개발)

  • Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.523-529
    • /
    • 2019
  • In this study, we investigated the pretreatment technologies of volatile organic compounds (VOCs) which is a problem as the semiconductor and display industry develops recently. The conventional concentrator used in the direct combustion system, is easily contaminated by the exhaust gas in the manufacturing process of the display, resulting in the low treatment efficiency of generated VOCs. Physical/Chemical analyses of the exhaust gas showed high boiling point and viscosity in addition to a large amount of molecular weight alcohols and oil components. In this study, we tried to treat degrading materials by using the heat exchanger in a pretreatment facility and some materials degrading the concentrator were condensed more than 90%. In addition, it was also confirmed that an auxiliary device of the grease filter could remove the redispersion polymer oil from the heat exchanger.

Analysis of Air Discharge and Disused Air Filters in Radioisotope Production Facility

  • Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • When air discharged from a radioisotope production facility is contaminated with radiation, the public may be exposed to radiation. The objective of this study is to manage such radiation exposure. We measured the airborne radioactivity concentration at a 30 MeV cyclotron radioisotope production facility to assess whether the exhaust gas was contaminated. Additionally, we investigted the radioactive contamination of the air filter for efficient air purification and radiation safety control. To measure the airborne radiation concentration, specimens were collected weekly for 4 h after the beginning of the radioisotope production. Regarding the air purifier, five specimens were collected at different positions of each filter-pre-filter, high-efficiency particulate air filter, and charcoal filter-installed in the cyclotron production room. The concentrations of F-18, I-123, I-131, and Tl-201 generated in the radioiodine production room were $13.5Bq/m^3$, $27.0Bq/m^3$, $0.10Bq/m^3$, and $11.5Bq/m^3$, respectively; the concentrations of F-18, I-123, and I-131 produced in the radioisotope production room were $0.05Bq/m^3$, $16.1Bq/m^3$, and $0.45Bq/m^3$, correspondingly; and those of F-18, I-123, I-131, and Tl-201 generated in the accelerator room were $2.07Bq/m^3$, $53.0Bq/m^3$, $0.37Bq/m^3$, and $0.15Bq/m^3$, respectively. The maximum radiation concentration of I-123 generated in the radioiodine production room was 1,820 Bq/g, which can be disposed after 2 days. The maximum radiation concentration of Tl-202 generated in the radioisotope production room was 205 Bq/g, and this isotope must be stored for 53 days. The I-123 generated in the radioiodine production room had a maximum concentration of 1,530 Bq/g and must be stored for 2 days. The maximum radiation concentration of Na-22 generated in the radioisotope production room was 0.18 Bq/g and this isotope must be disposed after 827 days. To manage the exhaust, the efficiency of air purification must be enhanced by selecting an air purifier with a long life and determining the appropriate replacement time by examining the differential pressure through systematic measurements of the airborne radiation contamination level.

A Study on the Prediction of Paint Dry Time at Ship Block's Inner Wall Placed in the Paint Dry Facility Adopting the Hot Air Supply System (열풍 공급 방식의 도장 건조 설비에서 선체 블록 도장 건조 시간 예측에 관한 연구)

  • Song, Yoo-Sok;Seol, Sin-Su;Yoon, Kwang-Won;Yang, Moon-Sik;Jeong, Jae-Hwan;Yoon, Hyun-Sik
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.75-81
    • /
    • 2011
  • An indirect concept and method is proposed to predict the paint dry time at the inside wall of ship block. To implement this concept on computer program, optimal hot air supply-exhaust system of paint dry facility was designed by CFD simulation and experiment was performed to get the paint dry time curve according to various paint dry conditions. After combining the block inside environment from the simulation results and the paint dry time prediction curve from the curve-fitting of experimental result, the GUI program which can be executed in general PC OS has been finally developed.

  • PDF

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

Idle speed control of car engine using microcontroller (마이크로컨트롤러를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.287-291
    • /
    • 1992
  • Recently, electronic engine control system is used in many automotives for high efficiency and low pollution. In order to perform these requirements, fuel injection control, spark timing control, knock control, exhaust gas recirculation control and idle speed control should be implemented. In this paper, idle speed control system using microcontroller is developed, which is compact in hardware, but powerful in software performing efficient control and various compensations for engine condition and environments. If idle speed is low engine operation is not smooth, reversely if high, fuel consumption is increased. Therefore idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. Also, an engine signal simulator, which generates various signals from engine, is realized for test facility.

  • PDF