• Title/Summary/Keyword: Exhaust Nozzle

Search Result 209, Processing Time 0.031 seconds

Investigation of the Exhaust gas on the Intake Manifold using Nozzle (노즐을 적용한 흡기 매니폴드의 배출가스 고찰)

  • Kim, Man-Jea;Kim, Tae-Jung;Choi, Byung-Ky
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.253-257
    • /
    • 2018
  • Exhaust gas from the combustion of automobiles adversely affects the human body and even pollutes the atmosphere. This study investigated the influence of exhaust gas change on intake manifold using the nozzle. First, the flow analysis was performed using the 3D flow analysis program. When the nozzle inlet air velocity increased, the average air velocity in the nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$ increased 37.3% and 31.9% respectively at the intake manifold outlet. As the nozzle inlet air velocity increased, the maximum flow rate of air increased to 42.2% and 32.6%, respectively at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$. In order to verify the analysis results, experiments on the exhaust gas were performed in the engine simulation system. As the nozzle inlet velocity increased, HC values decreased by 42.4% and 31.4% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$, respectively. And CO values decreased by 40.7% and 31.1% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$.

Analysis of Performance of Turbine Exhaust Nozzle for Liquid Rocket Engine (액체로켓엔진의 터빈 배기노즐 성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.316-319
    • /
    • 2008
  • A computational analysis has been conducted on the compressible flow in the turbine exhaust nozzle of the gas generator cycle liquid rocket engine. The commercial CFD code Fluent has been used. Four nozzle designs have been compared to select the turbine exhaust nozzle concept. Three candidates with single nozzle have comparable performance. The model with bifurcated nozzles shows significant performance loss. However it will be better in the view of balanced thrust distribution because of its symmetric geometry.

  • PDF

A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect (MILD 연소로에서 Coanda 노즐 효과를 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.967-972
    • /
    • 2013
  • A MILD (Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of coanda nozzle geometrical parameters, nozzle passage gap length, nozzle passage length, nozzle angle and expansion length. The optimal configuration of coanda nozzle for the best entrainment flow rate was gap length, 0.5 mm, expansion angle, 4o and expansion length, 146 mm. The nozzle passage length was irrelevant to the exhaust gas entrainement.

Test System Design for Turbofan Engine Exhaust Infrared Signature Reduction Study

  • Jo, Hana;Kim, Jaewon;Jin, Juneyub
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.85-90
    • /
    • 2020
  • The infrared signature that is associated with an aircraft is mainly caused by heat released from the engine and the exhaust plume. In this study, a test-system was designed to observe the overall infrared signature characteristics of a turbofan engine during operation under ground running conditions and the infrared reduction features that result from different exhaust nozzle configurations. A test stand was designed for the 1400 lbf class turbofan engine that included a bell-mouth type intake, fuel supply system, a measurement system, and a data acquisition/control system. The design and verification of the test system were conducted so that the basic nozzle and various 2D nozzles could be applied to study the infrared signature produced by a turbofan engine exhaust.

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle (MILD 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

A Study on the Combustion Flow Characteristic and NOx Reduction of the Exhaust Gas Recurculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 연소 유동 특성 및 NOx 저감에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.53-60
    • /
    • 2017
  • Various researches have been conducted for the reduction of NOx at the combustion furnace and exhaust gas recirculation method is commonly used technology for NOx reduction. The present research adopted coanda nozzles at the outside pipes of furnace to entrain the exhaust gas for the exhaust gas recirculation and the mixed gas was ejected to the tangential direction to cause the swirl flow in the furnace. The combustion flow characteristics in the exhaust gas recirculation burner with coanda nozzle has been elucidated by analyzing the swirl flow streamlines, temepraure and reaction rate distribution in the furnace. The exhaust gas entrained flow rate has been investigated by changing the excess air factor and coanda nozzle gap and the exhaust gas entrained flow rate increased with the increase of excess air factor and it decreased with the increase of coanda nozzle gap. The mean temperature at the exit plane of exhaust gas decreased with the excess air factor and it was little affected by the increase of coanda nozzle gap. The NOx mass fraction at the exhaust gas exit plane remarkably decreased with the excess air factor and it was also little affected by the increase of coanda nozzle gap.

Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines (함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향)

  • Son, Min-Soo;Choi, Jae-Sung;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.180-184
    • /
    • 2016
  • Legislative and regulatory actions regarding the exhaust gas from ships are being strengthened by both international organizations and national governments, to protect human health and the environment. Exhaust gas traps are excluded from exhaust gas regulation applications, but, recently, the United States, Britain, and other developed countries have examined a variety of ways to improve the system, including the introduction of electric propulsion systems to prevent air pollution generated by naval ships. This study investigates a large number of smoke problems of naval diesel engines to verify the effect of improving the nozzle characteristics. An exhaust gas emission measurement method to determine the quality of pollutant exhaust gas generated during low-load operation is proposed through the research methodology of the smoke problem. It was confirmed that the emissions value is improved by decreasing the nozzle hole diameter and increasing the injection pressure. At the same time, the flow rate decrease equation and setting up a test memo based on the nozzle diameter confirmed that the fuel consumption, to which the nozzle diameter in the flow path is related, is reduced.

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF