• 제목/요약/키워드: Exhaust Noise

검색결과 246건 처리시간 0.041초

차량 고급감 향상을 위한 흡배기계 음질지수 개발 (A Development of Sound Quality Index of an Intake and Exhaust System for High Quality Improvement of Luxury Vehicles)

  • 이종규;조덕형;서대원;임윤수;원광민
    • 한국소음진동공학회논문집
    • /
    • 제22권3호
    • /
    • pp.234-243
    • /
    • 2012
  • In this paper, a sound quality indices for the evaluation of vehicle intake and exhaust noise were developed through a correlation analysis of objective measurement data and subjective evaluation data. At first, intake and exhaust orifice noise were measured at the wide-open throttle sweep condition. And then, acoustic transfer function between intake orifice noise and interior noise at the steady state condition was measured. Also, acoustic transfer function for exhaust system was measured as the same method. Simultaneously, subjective evaluation was carried out by the paired comparison and semantic differential method by 27 engineers. Next, the correlation analysis between the psycho-acoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding sound quality index for the intake and exhaust noise was obtained from the multiple factor regression method. At last, the effectiveness of the proposed index was investigated.

전달경로의 차이를 이용한 차량용반능동형 머플러의 특성에 관한 연구 (A Research on Characteristics of Semi-active Muffler Using Difference of Transmission Paths)

  • 이종민;김경목;손동구;이장현;황요하
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.401-409
    • /
    • 2001
  • Passive type mufflers installed on every car haute inherent problem of lowering engine power and fuel efficiency caused by backpressure which is byproduct of complex internal structure. Recent improvements like installing a calve to change exhaust gas path depending on power requirement and rpm have only marginally improved performance. Tremendous amount of recent research works on active exhaust noise control have failed to commercialize because of numerous physical and economical reasons. In this paper, a unique seal-active muffler using difference of transmission paths is presented. In this system exhaust pipe is divided into two and joined again downstream. Exhaust noise is reduced by destructive interference when two-divided noise join again with transmission paths'difference which is half of the wavelength of a main noise frequency. One divided path has a sliding mechanism to change length thereby transmission path length difference is adjusted to entwine rpm change. The proposed system has minimal backpressure and does not need a secondary sound source like a speaker so it can overcome many problems of failed active noise control methods. We have verified proposed system's superior performance by simulation and comparison experiment with passive mufflers.

  • PDF

액티브 머플러를 이용한 자동차 배기계의 능동소음제어 (Active noise control with the active muffler in automotive exhaust system)

  • 김흥섭;홍진석;오재응
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1837-1843
    • /
    • 1997
  • This study experimentally demonstrates the use of active muffler attached to the automotive exhaust system to reduce exhaust noise. For improving the signal to noise ratio in the process of estimation of secondary path transfer functions, the on-line algorithm that conventional inverse modeling is combined with adaptive line enhancer is used as the control algorithm. Active muffler is designed that the primary noise and the control sound are propagated as a plane wave in the outlet. Therefore, the error microphone could be placed out of the tail pipe center of a high temperature and the radiation noise to the outside could be reduced in the whole area around the outlet. The control experiment for reducing exhaust noise with active muffler is implemented during run-up at no load. From the experimental results presented, compared with the conventional off-line method, the proposed on-line method is capable to acquire a reduction of exhaust noise above 5 dB in overall sound power level.

소음 및 엔진룸 냉각개선을 위한 건설기계테일파이프의 형상설계 (Shape Design of Construction Equipment Tailpipe for Noise Reduction and Engine Room Cooling)

  • 김성재;양지혜;김낙인;김주식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.737-740
    • /
    • 2004
  • The interior noise reduction of construction equipment is concerned for improving the driver comfort in this study. From the baseline test, the exhaust noise gives a big contribution to the interior noise of construction equipment. And the detail noise contribution analysis of the exhaust system, the tail pipe, which is for ventilation an engine room hot air to outside, amplify the exhaust noise around operating engine RPM associated with tail pipe structural and cavity resonances. To remove the noise amplifying effects, the tail pipe has to be shorted its length. Even the noise can be attenuated the ventilation flux when using the redesigned tail pipe is reduced than the original one. Thus, a shape change of the tail pipe is additionally needed for increasing the ventilation flux and attenuating the exhaust noise using CFD technique. The CFD results of the tail pipe give a meaning full information what obstructs the ventilation flex in the current design and how changes the tail pipe.

  • PDF

배기(排氣)시스템의 배압(背壓)과 연소특성(燃燒特性)에 관한 연구 (A Study on the combustion characteristcs for backpressure of exhaust system in SI engine)

  • 박대언;박경석;박세종;손성만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.206-212
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile, it is needed to consider the pulsation noise, air current noise, vibration of air pipe which generate the intake and exhaust noise of the automobile. Moreover, the discharge sounds, intake sound, radiation sound, transmitted sound are occurred. To reduce this influence, the variable valve is needed and to control these factors, path transformation muffler and active type muffler are needed. While engine efficiency could be reduced with this transformationand resistance by the pressure, thermal property. In this study, how to design exhaust systems yielding higher condversion efficiency, lower backpressure and optimize the performance. this study is recommended for exhaust system and designers and engineers involved in SI engine exhaust system and it will furnish information for you to design more efficient.

  • PDF

유동소음을 고려한 건설장비용 머플러의 저소음화 연구 (A Study on the Noise Reduction of Construction Equipment's Muffler with the High Velocity Flow)

  • 김형택;주원호;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.802-805
    • /
    • 2007
  • The exhaust system, including a muffler, is one of the major sources to generate the radiated noise of construction equipment. The muffler is generally known that it reduces the exhaust noise level, but it sometimes increases the noise level because of the flow effect inside a muffler. So, it is required to consider the flow effect inside a muffler to reduce the exhaust noise level of construction equipment. In this paper, an experimental method to consider a quantitative flow effect inside a muffler was set up through a series of tests. Finally, the experimental result was verified through the flow noise analysis using CFD analysis result. These results make it possible to understand the dynamic characteristics of the flow noise and to design the low noise muffler for the construction equipment.

  • PDF

테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구 (Cabin Noise Reduction of wheel Loader through the Shape Optimization of Tail-Pipe)

  • 고경은;주원호;김동해;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.686-689
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

  • PDF

테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구 (Cabin Noise Reduction of Wheel Loader through the Shape Optimization of Tail-Pipe)

  • 고경은;주원호;김동해;배종국
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1238-1243
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room, however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로- (An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise-)

  • 양관섭;유남구;박병전;김영완
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

관내 유속을 고려한 상선의 배기관용 소음기의 성능실험연구 (An experimental study on the performance of silencers for exhaust merchant ships considering air flow velocity)

  • 엄재광;김사수
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.108-115
    • /
    • 2001
  • 선박의 주기관 및 발전기의 실린더내의 폭발소음은 배기관을 통하여 연돌 상부에서 전파되어 인접한 거주구 상층부 및 bridge wing 등의 소음을 증가시키는 주 요인이 되고 있다. 본 연구에서는 실제의 배기관인 400mm 및 600mm의 지름의 관에 대하여 0m/s 및 32m/s의 유속에 대하여 25dB 및 35dB silencer에 대하여 감음 성능을 실험하였다. 관내 유속은 축류 팬에 의하여 발생시켰고 실제 소음기(silencer)를 사용하여 감음 성능을 실측하였다.

  • PDF