• Title/Summary/Keyword: Exhaust Heat

Search Result 739, Processing Time 0.032 seconds

Improvement of the Heat Resistance Reliability of an Axial Smoke Exhaust Fan (배연용 축류팬의 내열 신뢰성 향상)

  • Hur, Jin-Huek;Heo, Ki-Moo;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.656-662
    • /
    • 2009
  • In this paper, the heat resistance reliability of an axial smoke exhaust fan was investigated. An axial smoke exhaust fan should be capable of operating at $250^{\circ}C$ for 2 hours. The heat resistance reliability was evaluated by the heat resistance reliability test. A B10 life with a 90% confidence level was estimated to be about 48 minute. The failure occurred in the motor due to high temperature. The main failure mechanisms of the motor were melting of bond and insulating paper and burning of insulating materials in the coil. The heat resistance reliability was improved by changing the way to unite the core and the coil and by replacing the insulating paper and the insulating materials of the coil. A B10 life with a 90% confidence level of a modified axial smoke exhaust fan was estimated to be over 120 minute.

An Experimental Study on Performance of Paper Heat Exchangers for Exhaust Heat Recovery Ventilation System (폐열회수 환기시스템에 사용된 종이 열교환기의 성능에 관한 실험적 연구)

  • Chung, Min-Ho;Oh, Byung-Kil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.240-246
    • /
    • 2012
  • The supply and use of exhaust heat recovery ventilation system as effective energy saving equipment has been increasing steadily. The exhaust heat recovery ventilation system can be installed at ceiling of balcony or emergency space. However, ventilation system can not be installed at emergency space because where have to remain as empty space by law. Therefore, the proper installation space of ventilation system is needed. In this study, to install heat recovery ventilation system in the light weight wall, thickness of heat exchanger was assembled below 140 mm. One or two paper heat exchangers were installed in the ventilation system. The efficiency of heat recovery was analyzed through performance experiment on case of cooling and heating mode.

A Study on the Performance Improvement of Plastic Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 플라스틱 열교환기의 성능 향상에 관한 연구)

  • Kim, Jin-Hyuck;Yoo, Seong-Yeon;Han, Kyu-Hyun;Kang, Hyung-Chul;Yun, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.328-333
    • /
    • 2008
  • In order to control indoor air quality and save energy, it is needed to install a suitable heat exchanger for heat recovery. A plastic heat exchanger have many advantages and can recover $50{\sim}80%$ of the temperature difference between supply and exhaust air. The purpose of this research is to evaluate the performance of plastic heat exchanger with different shapes. Pressure drop and heat transfer characteristics of plastic heat exchangers are investigated for various velocities.

  • PDF

Derivation of Design Parameter for Heat Regenerator with Spherical Particles (구형축열체를 이용한 축열기의 설계인자도출)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Numerical analysis on the thermal characteristics of the exhaust triple-glazed airflow window (배기식 3중 집열창의 열적 특성에 대한 수치해석)

  • 김무현;오창용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The flow and heat transfer characteristics of the exhaust airflow window system were studied numerically by a finite volume method. Attention was paid to see the decrease in indoor cooling load. The exhaust air flow rate, solar energy power and aspect ratio of window were considered as main variables. From the result of the comparison between the exhaust airflow window and the enclosed window, the indoor heat gain was reduced remarkably by 76%. It is also suggested that in the design of the exhaust airflow window optimum values of aspect ratio, H/W and exhaust air flow rate, Re were about 0.05 and 600, respectively.

  • PDF

Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses (온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성)

  • Choi, Byungchul;Lee, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.

Numerical Analysis on Energy Reduction of an Exhaust-Air-Heat-Recovery Type Air Washer System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 에어와셔 시스템의 에너지절감에 관한 수치해석)

  • Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Son, Seung-Woo;Shin, Dae-Kun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.697-703
    • /
    • 2010
  • In recent semiconductor manufacturing clean rooms, air washers are used to remove airborne gaseous contaminants from the outdoor air introduced into a clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is useful for reducing the outdoor air conditioning load required to maintain a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to cool or heat the outdoor air. In the present study, numerical analysis was conducted to evaluate the recovered heat of an exhaust air heat recovery type air washer system, which is the key part of an energy saving outdoor air conditioning system for semiconductor clean rooms. The present numerical results showed relatively good agreement with the available experimental data.

The Development and Performance Evaluation of the Air-preheating Heat Exchanger for Ultra-high Temperature Applications (초고온융 공기예열식 열교환기의 개발 및 성능 평가)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.78-84
    • /
    • 1999
  • A compact air-preheating type heat exchanger was developed and tested for the ultra-high temperature heat recovery applications. For the direct use of exhaust gases up to $1200^{\circ}C$, the heat exchanger adopted a ceramic core with high strength and low thermal expansion coefficient less than $1{\times}10^{-6}^{\circ}C^{-1}$. The ceramic core was fabricated by special extrusion and bonding techniques. To minimize thermal stresses in the core, spring-loaded sealing mechanism was designed and successfully installed. 1-pass air flow scheme was adopted for the compactness and cost-savings. The pressure test for the ceramic core showed no failure under 35 kPa and less than 3% leak under 7 kPa. Flue gas simulation system was developed to investigate the performance of the heat exchanger. The test results showed normal operations of the heat exchanger up to $1200^{\circ}C$ of exhaust gases and relatively high heat recovery efficiencies of 31~39% depending upon exhaust gas temperatures..

  • PDF

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF