• Title/Summary/Keyword: Exhaust Efficiency

Search Result 831, Processing Time 0.024 seconds

Basic Study of Behavior Characteristics of Emulsified Fuel with Fuel Design (연료설계에 의한 에멀젼연료의 거동특성에 관한 기초연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.22-28
    • /
    • 2015
  • A compression ignition type of diesel engine makes fuel efficiency better and $CO_2$ in the exhaust gas lower. Also it is suitable to apply alternative fuels(blended fuel) to the engine. The objective of this study is the emissions reduction of diesel engine with EF(Emulsified fuel). The emulsified fuel consists of diesel and peroxide($H_2O_2$) and Soot reduction without worsening of NOx emissions can be achieved by using thermal decomposition of the peroxide, i.e. the chemical effect of the OH radical in actual engine. For manufacturing emulsified fuel, a surfactant which is comprised of span 80 and tween 80 mixed as 9:1, was mixed with a fixed with 3% of the total volume in the emulsion fuel. In addition, considering the mixing ratio of the surfactant, the mixing ratio of $H_2O_2$ in the emulsified fuel was set as EF0, EF2, EF12, EF22, EF32, and EF42, respectively. Consequently, this study aims to obtain the optimization of fuel design(mixing) for the emulsified fuel applying to the diesel engine.

Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car (승용차 폐열 회수용 유기 랭킨 사이클 성능 분석)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Yu, Je-Seung;Lee, Young-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

A study of cleaning of heat transfer surface in thermal power system (열동력 시스템 내부 열교환 표면의 클리닝에 관한 연구)

  • HAN, Kyu-il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.576-582
    • /
    • 2015
  • The efficiencies of thermal power system using fossil fuel depend on heat exchangers which extract energy from the exhaust gas before it is expelled to the atmosphere. To increase heat transfer efficiency it is very important to maintain the surface of heat exchanger as clean condition. The accepted skill of cleaning of fouled surface of heat exchanger is soot blowing. A high pressure jet of air is forced through the flat surface of plate to remove the deposit of fouling. There is, however, little knowledge of the fundamental principles of how the jet behave on the surface and how the jet actually removes the deposit. Therefore, the study focuses on the measuring of cleaning area and cleaning dwell time after accumulating the simulated deposit on the flat surface. The deposit test rig was built for the study and simulated deposit material is used after measuring the physical property of the each material by shearing stress test. Much data was obtained for the analysis by the parameters change such as the different jet speed, different inner pressure and variable distance of the jet from the test rig surface. The experimental data was compared with the theoretical equation and most of the data matches well except some extreme cases.

A Study on the Application of the Lean Boosting in a Hydrogen-fueled Engine with the SI and the External Mixture (흡기관 분사식 수소 SI기관의 희박과급 적용에 관한 연구)

  • Lee, Kwangju;Lee, Jonggoo;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • In order to achieve simultaneously the ultra-low NOx, the high power and the high efficiency in a hydrogen-fueled engine with SI and the external mixture, the effects of low temperature combustion, performance and exhaust are compared and analyzed by the application of the lean boosting. As the results, the decrease rate of the high temperature in the hydrogen is less decreased than the other fuels by high constant-volume specific heat. However, when the conditions of 1.7bar and ${\Phi}=0.33$ are reached by the lean boosting, the maximum gas temperature of hydrogen is decreased under the temperature of NOx formation and it is possible to stabilize combustion below 2% of COVimep. Also, at that condition, it is feasible to achieve simultaneously NOx-free and the power of gasoline level. Therefore, it is found that the lean boosting is useful in the hydrogen-fueled engine.

A Study on the Engine Performance of Low Level Bio-alcohol Fuels (저농도 바이오알코올 혼합연료의 엔진 성능평가 연구)

  • KIM, HYUN-JUN;LEE, HO-KIL;KIM, JAE-KON;OH, YOUNG-KYU;PARK, SUNG-WOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.691-696
    • /
    • 2017
  • An experimental study on engine performance and emission characteristics for bio-alcohol fuels considered as RFS fuel. The Bio-alcohol fuel were mixed ethanol and butanol and used in a 1.8 liter mpi engine. The efficiency of the BSFC is excellent in the maximum torque operation condition and the part load operation condition. As the bio-alcohol mixing ratio increased, the lambda <1 and ignition timing advanced $5^{\circ}CA$. As the mixing concentration increased, NOx emission increase and $CO_2$ emission decreased.

The Performance and Emissions Analysis of a Multi Cylinder Spark Ignition Engine with Gasoline LPG & CNG

  • Chauhan, Bhupendra Singh;Cho, Haeng-Muk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.33-38
    • /
    • 2011
  • The introduction of alternative fuels is beneficial to overcome the fuel shortage and reduce engine exhaust emissions. LPG and CNG are relatively clean fuel and considered as most promising alternative automotive fuels worldwide because of its emission reduction potential and lower fuel price compared to gasoline. Now a day’s adaptation of dual fuel approach is the growing as common trend. The two fuels can be successfully implemented with existing gasoline engine with little modification. The present study was done to analyze the performance and emissions analysis of a multi cylinder spark ignition engine fuelled with the benefits of CNG and LPG aseffective alternate automotive fuels by simply using them in an unmodified petrol engine. The test results indicate, the energy content of CNG and LPG is the most limiting factor in acceptance for fuel economy and performance reasons. Thermal efficiency was high for CNG lowest for gasoline and LPG between the two. BSFC, CO and HC were low and NOx was high for CNG and low for gasoline, LPG lies between the two.

A study on the selection of optimal marine engine and its techno- economical evaluation method (최적박용기관의 선정 및 그의 경제성 평가방법에 관한 연구)

  • 전효중;조기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.51-66
    • /
    • 1984
  • The cost percentage of engine part in the total building cost of a ship is about 30-40% and the main engine occupies about 50% of the engine part cost. For certain ships the fuel bill can be as high as about 60-70% of the total operating cost after two oil shocks and its amount for one year is nearly equivalent to her main engine price. This fact has further increased the pressure on the engine builders to develop engines of higher efficiency and better possibilities to burn further deteriorated fuel qualities. But the energy-saving plants are ordinarily more expensive and their available amount of exhaust gas energy is less and therefore, they are not always profitable and optimum systems. This paper is prepared to decide the most economical and efficient engine systems by presenting reasonable selecting and economical evaluation methods of the main engine, which is the largest single unit and the most expensive, and its auxiliaries. In order to demonstrate the application of investigated methods in a practical case, a 46, 000 DWT class bulk carrier is selected as a model ship and her main engine and its auxiliaries are selected and evaluated. The result shows that the optimum determined has one year three months POP, 0.903 IRR at a year, 4, 116, 000 dollars PW in 15 years (for 5% escalation rate of fuel cost) and 9.522 BCR for same condition, when the engine plant of a same existing ship is taken as the basis.

  • PDF

A Study on the Forecast of Marine Fuel Cell Market (선박용 연료전지 시장 전망에 관한 연구)

  • Park, Han-Woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1212-1221
    • /
    • 2010
  • Recently, various types of ships are facing with a challenge to adopt the high efficient and environment-friendly power generating systems. For the reduction of exhaust emissions, improvement of thermal efficiency, and lowering the noise and vibration levels, fuel cells are gaining the much more interests. This paper projects the future marine fuel cell market on the basis of considering the historical world shipbuilding and marine engine market. To do this, the number of total ship is, at first, obtained by forecasting the number of annual new shipbuilding orders and completions. Finally, fuel cell market is forecasted by obtaining the engine capacity for annual world total number of ships and engine orders.

Piggery Slurry Composting Using Batch Operating Autothermal Thermophilic Aerobic Digestion System

  • Ahn, Hee K.;Choi, Hong L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.273-279
    • /
    • 2006
  • The performance of an autothermal thermophilic aerobic digestion (ATAD) system was studied to determine if nitrogen loss, as ammonia, was affected by an exhaust gas condenser. The system was run with and without a condenser while treating $8m^3$ of piggery slurry for 8 days. The system with a condenser (SWC) maintained the reactor temperatures above $40^{\circ}C$ for 2 days during the 8 days run, while the system without a condenser (SWOC) remained above $40^{\circ}C$ for 6 days. The SWC maintained the reactor temperatures mostly at mesophilic conditions while the SWOC at thermophilc conditions. Differences in operation conditions for the two runs were mainly caused by differences in atmospheric temperatures. Soluble chemical oxygen demand (SCOD) and volatile solids (VS) removal efficiencies of the SWC (SCOD: 62%, VS: 41%) were higher than those of the SWOC (SCOD: 40%, VS: 20%). The total Kjeldal nitrogen (TKN) removal efficiency of the SWC (7%) was less than that of the SWOC (25%). The concentration of total volatile fatty acids (VFA) in the SWC was observed to be lower than the threshold value of 0.23 g total VFA/L after 6 days, while the SWOC progressed below the threshold value after 3 days. No offensive odor emissions were observed in either run, which suggest that the use of the ATAD system may be a good odor removal strategy.

Effect of Non-Uniform Mixture on Cycle Fluctuation of Multi-Cylinder Spark Ignition Engine(I) (다기통 전기점화기관의 혼합기 불균일화가 사이클 변동에 미치는 영향 (I))

  • 송재학;이용길;박경석;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1736-1743
    • /
    • 1992
  • The combustion in the cylinder of spark ignition engine is completed after the delayed time that the liquid film fuel is vapourized as flowing into the combustion chamber. It is necessary to enhance the homogeneity of mixture and the combustion phenomenon in order to improve the heat efficiency and the emission characteristics of spark ignition engine. The main purpose of this paper is to manufacture a combustion analyzing system and examine closely the influence of non-uniformity due to the liquid film fuel flowing in the intake manifold on the combustion characteristics by using a 4 stroke multi- cylinder spark ignition engine. Moreover, with each cylinder, the interpretation of combustion characteristics by indicator diagram and the concentration of exhaust gas were investigated.