• Title/Summary/Keyword: Exhaust CAM

Search Result 13, Processing Time 0.019 seconds

A Study of the Circuit for CPS Signal Using Magnetic Pickup (마그네틱 픽업 방식의 CPS 신호 해석 회로에 관한 연구)

  • Ju, Yong-Wan;Cho, Bong-Su;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The basic signals for electronic engine control are velocity and degree of the engine cam shaft. The CPS sensor used for this signal and magnetic pick-up type CPS sensor is more popular. It is very important thing analyze this signal correctly. If there are some mistakes at the analysis, like a noise, The engine do not working at the best status, it will generate some noise, emit exhaust fumes and waste more gases. In general way to analysis this signal, you use zero-level detector circuit and in order to reduce the error you must use another sensor like a TDC sensor. In this paper, We proposed the analysis method using electronics circuits for magnetic pick-up type CPS sensor. We designed Comparison level detector circuit, Differential circuit and Full-rectifier circuit for detected the Long tooth and Short tooth level correctly without another sensor. We expected it is useful for more reliable engine control.

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.

A Study for Fire Examples Involved in Engine Coolant leakage, Brake and Exhaust System Over-Heating of Heavy-Duty Truck Vehicle (대형 트럭 자동차의 엔진냉각수 누출, 제동 및 배기시스템 과열에 관련된 화재사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Jung, Dong Hwa;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.40-45
    • /
    • 2019
  • This paper is a purpose to study the failure example for heavy-duty vehicle fire. The first example, the researcher found the engine over-heating phenomenon causing a coolant leakage by the sealing poor of head-gasket because of D-ring part deformation contacting with cylinder liner top-part and cylinder head. He certified a fire breakout by short transferred to surrounding wiring of air-cleaner. The second example, a brake lining by return fault of break operating S cam causing with much wear of a rear 4 wheel brake lining repeatably was worn by friction. In the long run, it became the cause of fire. The third example, the researcher knew the fire cause was came about the short of wire by overload of tilting motor when the driver tilted up the cap to inspect a engine. Therefore, a heavy-duty fire must minimize the fire occurrence by thorough controlling.