• 제목/요약/키워드: Exhaust Airflow Rate

검색결과 18건 처리시간 0.018초

배기식 3중 집열창의 열적 특성에 대한 수치해석 (Numerical analysis on the thermal characteristics of the exhaust triple-glazed airflow window)

  • 김무현;오창용
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2000
  • The flow and heat transfer characteristics of the exhaust airflow window system were studied numerically by a finite volume method. Attention was paid to see the decrease in indoor cooling load. The exhaust air flow rate, solar energy power and aspect ratio of window were considered as main variables. From the result of the comparison between the exhaust airflow window and the enclosed window, the indoor heat gain was reduced remarkably by 76%. It is also suggested that in the design of the exhaust airflow window optimum values of aspect ratio, H/W and exhaust air flow rate, Re were about 0.05 and 600, respectively.

  • PDF

환기량 변화에 따른 실내공기질과 국소급기지수 특성 (Characteristics of Indoor Air Quality and Local Supply Index with a Variation of Supply ${\cdot}$ Exhaust Airflow rate)

  • 한창우;노광철;오명도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.21-26
    • /
    • 2005
  • We performed the numerical analysis on the characteristics of indoor air quality and local supply index with a variation of supply · exhaust airflow rate. We analyzed the local supply index and carbon dioxide concentration at the room and breathing zone with respect to the variation of the supply · exhaust airflow rate. From the numerical results, we found that local supply index was affected but carbon dioxide concentration was hardly affected by the variation of the airflow rate in the room. And we also knew that carbon dioxide concentration was raised in despite of the increment of the supply airflow rate in the breathing zone. After this study it is necessary to analyze the local exhaust index when we evaluate the state of the ventilation in the room.

  • PDF

대공간 화재시 배연효율 정의에 관한 수치해석적 연구 (Numerical Study on the Definition of the Exhaust Effectiveness of Smoke under Fire in a Large Space)

  • 김정엽;장경진;한화택
    • 설비공학논문집
    • /
    • 제26권11호
    • /
    • pp.535-540
    • /
    • 2014
  • This paper investigates the exhaust effectiveness of smoke, in the case of fire in a large atrium space. Numerical analysis was conducted to simulate transient fire growth in a test room, modeled by the Murcia atrium fire test. Various indices representing the exhaust performance of the exhaust system were obtained, such as the height of the smoke layer, and the instantaneous and accumulative capture efficiency of the smoke. The residual life time of smoke from the fire was also obtained, by injecting tracer gases at the fire location, depending on the airflow rate, and the location of the exhausts. The capture efficiency based on smoke concentration at the exhausts exhibits how much smoke can be removed by the exhaust system; whereas, the exhaust effectiveness based on residual life time indicates how rapidly the smoke can reach the exhaust locations, before being exhausted. The definitions and meanings of the indices to be used in representing the exhaust performance of a smoke exhaust system installed in a large space are discussed.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구 (Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel)

  • 유지오;김진수;이동호
    • 한국화재소방학회논문지
    • /
    • 제30권2호
    • /
    • pp.68-74
    • /
    • 2016
  • 도로터널에 적용하는 반횡류환기방식은 터널의 전연장에 걸쳐서 단위길이당 풍량이 균일하게 될 수 있도록 포트의 개도 조정이 필수적이다. 그러나 현재 국내에서 운영중인 터널의 경우에는 설계시 이에 대한 고려가 적절히 이루어지지 못하고 있는 실정이다. 이에 본 연구에서는 개도계산을 위한 프로그램을 개발하고 반횡류환기방식의 터널에서 포트의 운영방안을 제시하였다. 연구결과, 포트의 개도는 급기방식의 덕트에서는 환기소측에서 덕트의 말단(bulk head)쪽으로 갈수록 증가하였다가 감소하는 경향을 가지며, 최소 개도는 56% 정도로 나타나고 있다. 또한 배기방식에서는 환기소측이 15% 정도로 가장 작고 bulk head 쪽으로 갈수록 증가하는 경향을 보이고 있다. 화재시 300 m 구간의 배연풍량을 검토한 결과, 포트사이즈를 조정하지 않는 경우와 급기방식으로 포트사이즈을 조정한 경우에는 터널중앙부의 배연량이 각각 8.1%와 12.5%로 터널중앙부의 배연풍량이 저조한 것으로 나타났다. 따라서 반횡류환기방식의 터널에서는 평상시 환기효율이 저하하더라도 배연시 균일한 풍량을 얻을 수 있도록 포트의 개도를 설정하여 운영하는 것이 반드시 필요한 것으로 판단된다.

거주공간에 대한 급·배기 일체형 디퓨저의 환기 및 온열환경 유지성능에 대한 연구 (A Study on The Performance of Ventilation and Thermal Environment for a Combined Type Diffuser in a Residential Space)

  • 임석영;장현재
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.74-81
    • /
    • 2017
  • In this study, the combined-type diffuser developed by the Authors, in a previous study, was applied to a residential space. The performance of a ventilation and thermal environment, created by the use of a combined-type diffuser was compared to the pan-type diffuser widely used in apartment houses. In cooling conditions, because of the relatively high air flow rate of ceiling cassette-type air conditioners, the characteristics of airflow distribution in a room were governed by the air conditioner's airflow. In heating conditions, because of the low air flow rate of the diffuser, the characteristics of airflow distribution were governed by the buoyancy effect created by cold external walls and a hot floor. In terms of the Air Diffusion Performance Index (ADPI), which is a thermal environmental index, the result of a combined-type diffuser was greater than a pan-type diffuser in both of cooling and heating conditions. Consequently, the combined-type diffuser showed equal or superior ventilation and thermal environment performance compared to a pan-type diffuser.

Influence of the Cyclic Parameters on the Nitric Oxide Formation in the diesel Engine

  • ;이창식
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.27-35
    • /
    • 1998
  • This study describes the influence of combustion parameters on the nitric oxide emission, such as injection timing, air flow rate, injected amount of fuel, and compression ratio of engine. In order to determine the influence factors on the nitric oxide emission, the experiment were investigated with various parameters of engine cycle. According to the results of this study, the retardation of injection timing and the increases of airflow rate, and the decreases of fuel injection amount reduce the nitric oxide concentration in the exhaust emissions. Also, the increases of compression ration of engine increase in the concentration of nitric oxide formation in the combustion chamber. The results of this study give a guideline to decrease the nitric oxide formation by using the simulation program.

  • PDF

주방후드에서 보급공기의 영향 (The Effect of Makeup Air on Kitchen Hoods)

  • 장경진
    • 대한설비공학회지:설비저널
    • /
    • 제32권11호
    • /
    • pp.63-68
    • /
    • 2003
  • 주방환기의 계획에 있어서 조리시 발생하는 오염물질을 적절히 배기시키는 것이 가장 중요하다. 기구의 배치와 발열량을 평가하고 후드의 위치와 종류 그리고 덕트직경과 경로를 결정하며 적정한 풍량을 제거하기 위한 배기팬을 선정한다. 그러나 일반적인 실내 공기밸런스 계획을 시행함에도 불구하고 배기된 체적에 해당하는 풍량을 보충 공급하는 방식에 대한 고려는 현재 상대적으로 부족한 상태이다.

  • PDF

열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II) (Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II))

  • 서원명;강종국;윤용철;김정섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

국내 석회석 광산 수갱 굴착에 의한 통기효과 분석 연구 (A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine)

  • 이창우;응우엔 반득;키로 록키 키부야;김창오
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.609-619
    • /
    • 2018
  • 주선풍기가 설치된 통기수갱이 굴착된 국내 석회석 광산에서 수행한 통기수갱의 통기효과 분석결과 자연통기 및 기계통기 효과가 뚜렷하게 나타났다. 수갱을 통하여 입기되는 자연통기량은 최대 $11.7m^3/s$이었으며 갱내 공기온도의 측정에 의하여 비교적 정확한 정량적 예측이 가능하였다. 선풍기 가동에 의한 배기 통기량은 $20.3{\sim}24.8m^3/s$로 통기량의 변동은 갱도내 장비의 이동에 의한 통기특성곡선의 상향이동에 따른 선풍기 운전점의 변화에 의한 결과이므로 통기저항의 저감 노력이 요구된다. 갱구로부터 수갱까지 총 1912 m 갱도내 난류확산계수는 $15m^2/s$, $18m^2/s$로 나타나 오염물질은 기류보다 상대적으로 빨리 확산되므로 공기질 제어를 위하여 신속한 배기가 요구된다. 따라서 통기용 수갱은 급격히 심부화 및 대형화되고 있는 국내석회석광산의 지속적 개발을 위한 필수적 갱내 환경제어 시설로 권장되어야할 것으로 판단된다.