• Title/Summary/Keyword: Exhaust

Search Result 3,814, Processing Time 0.027 seconds

Application of Simplified Curing Unit for the Extension of Storage Life and Improvement of Physicochemical Quality of Sweet Potatoes during Long-term Storage (간이 큐어링 설비를 이용한 큐어링 처리가 장기간 저장 중 고구마의 품질 개선에 미치는 영향)

  • Song, Jeong-Hwa;Kim, Sung-Kyeom;Chun, Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.304-310
    • /
    • 2011
  • To evaluate the effect of curing treatment using a newly developed simplified curing unit (SCU) on the physicochemical quality of stored sweet potatoes was investigated for six months. The SCU consisting of a heater, an air circulation fan, exhaust fans, and a humidifying duct was installed in a cold storage room where the harvested sweet potatoes were stacked. During the six days of curing treatment, air temperature and relative humidity in the storage room were set at $32^{\circ}C$ and 90%, respectively. Physical and chemical properties of sweet potatoes were measured at 1-month intervals from the first day of storage. McKinney index showing the incidence and severity of decay was 0.83% in the curing treatment, while that of untreated control was 5.08% over the same storing period. Firmness, soluble solids content, and dry matter content in the cured sweet potatoes were greater than those of untreated control. Moreover, the changes of skin color in uncured potatoes occurred rapidly than cured one which showed delay of skin discoloration during the long-term storage. Results suggest that the SCU treatment improves the physicochemical quality of stored sweet potatoes and extends their storability. Therefore, the SCU can be effectively used for curing treatment of sweet potatoes with a relatively low cost.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

Evaluation of the corrosion property on the welded zone of forged steel piston crown with types of filler metals (용접재료별 단강 피스톤 크라운 용접부위의 부식특성에 대한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Since the oil price has been significantly jumped for recent some years, the diesel engine of the merchant ship has been mainly used the heavy oil of low quality. Thus, it has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of most parts surrounded with combustion chamber is more serious compared to the other parts of the engine. Therefore, an optimum weldment for these parts is very important to prolong their lifetime in a economical point of view. In this study, four types of filler metals such as Inconel 625, 718, 1.25Cr-0.5Mo and 0.5Mo were welded with SMAW and GTAW methods in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H2SO4 solution. The weld metal and base metal exhibited the best and worst corrosion resistance in all cases of filler metals. In particular, the weld metal welded with filler metals of Inconel 718 revealed the best corrosion resistance among the filler metals, and Inconel 625 followed the Inconel 718. Hardness relatively indicated higher value in the weld metal compared to the base metal. Furthermore, Inconel 625 and 718 indicated higher values of hardness compared to 1.25cr-0.5Mo and 0,5Mo filler metals in the weld metal.

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

Study of NO Storage and Reduction on LNT by Micro Bench-Flow Reactor (마이크로 벤치-플로우 리액터를 이용한 LNT 촉매의 NO 흡장과 정화성능에 관한 연구)

  • Yoon, Joo-Wung;Hwang, Seung-Kwon;Hwang, In-Goo;Park, Sim-Soo;Lee, Jin-Ha;Yeo, Gwon-Koo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.789-798
    • /
    • 2011
  • We carry out an experimental investigation to analyze the basic performance of NO(nitric oxide) storage in a lean phase and also analyze the NO reduction achieved by the spraying of reducing agents in the rich phase of the exhaust gas in an LNT(Lean NOx Trap). This is an after-treatment system used to reduce the NOx emissions from a diesel engine. If the stored NO is reduced, we measure the outlet concentration downstream of the LNT. The test LNT material used in the experiments is commercial LNT. After being canned into stainless-steel(SUS304), it was built in a micro bench-flow reactor. Compositions of feed gases, three heated and three no heated gases were sprayed upstream of the LNT to analyze the characteristics. We use various temperatures and space velocities as response variables.

A Study on the Improvement Case of Cosmetic Packaging Process Using ARENA Simulation (아레나 시뮬레이션을 활용한 화장품 포장공정의 개선사례 연구)

  • Lee, Nam-Su;Lee, Jae-Yong;Jo, Eun-Hyeon;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2020
  • Demand for cosmetics with functionality and eco-friendliness has increased dramatically due to recent aging, well-being trends, and increased interest in beauty. Cosmetics production in 2014 was 8,970.4 billion won, an increase of about 50% compared to 6,014.6 billion won in 2010. In the midst of this, similar companies in intense competition are pursuing differentiated strategies and innovation activities to solve quality, price and delivery problems. In particular, cosmetics packaging work is getting more difficult due to the increasing bill of materials (BOM) and difficult assembly methods. Therefore, in this study, the following problems were identified and suggestions for the improvement of the packaging Many research laboratories such as biotechnology, chemistry, and pharmaceuticals, which are undergoing various studies, are equipped with ready-made laboratory safety equipments such as bio-safety workbenches, aseptic bases, and exhaust workbenches. However, most researchers are disadvantaged in using existing safety equipment. This is because existing safety equipment can not take into account all of the unique characteristics of the research. For this reason, researchers are demanding the development of customized safety equipment that is well suited to their research needs. process of Company C, which is facing difficult situation to respond to the customer 's delivery due to the 52 - hour work week. First, we used the stopwatch to find the difficulty process in the packaging process and show ways to improve it. Second, to improve the efficiency of line balancing in the packaging process, we integrate processes, improve work methods, and perform simple automation. As a result, the prepare loss for replacement was reduced by 1 minute from 5 minutes, resulting in a 23% increase in productivity from 112 ea./hour to 137ea./ hour per person. At this time, the LOB of the packaging process was improved from 70% to 82% by operating one more production line through one person per line, total 9 people saving.

Occupational Lung Cancer Surveillance in South Korea, 2006-2009

  • Leem, Jong-Han;Kim, Hwan-Cheol;Ryu, Jeong-Seon;Won, Jong-Uk;Moon, Jai-Dong;Kim, Young-Chul;Koh, Sang-Baek;Yong, Suk-Joong;Kim, Soo-Geun;Park, Jae-Yong;Kim, In-Ah;Kim, Jung-Il;Kim, Jung-Won;Lee, Eui-Cheol;Kim, Hyoung-Ryoul;Kim, Dae-Hwan;Kang, Dong-Mug;Hong, Yun-Chul
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • Objectives: The lung cancer mortality in Korea has increased remarkably during the last 20 years, and has been the first leading cause of cancer-related deaths since 2000. The aim of the current study was to examine the time trends of occupational lung cancer and carcinogens exposure during the period 2006-2009 in South Korea, by assessing the proportion of occupational burden. Methods: We defined occupational lung cancer for surveillance, and developed a reporting protocol and reporting website for the surveillance of occupational lung cancer. The study patients were chosen from 9 participating university hospitals in the following 7 areas: Seoul, Incheon, Wonju, Daejeon, Daegu, Busan, and Gwangju. Results: The combined proportion of definite and probable occupational lung cancer among all lung cancers investigated in this study was 10.0%, 8.6%, 10.7%, and 15.8% in the years 2006 to 2009, respectively, with an average of 11.7% over the four-year study period. The main carcinogens were asbestos, crystalline silica, radon, polyaromatic hydrocarbons (PAHs), diesel exhaust particles, chromium, and nickel. Conclusion: We estimated that about 11.7% of the incident lung cancer was preventable. This reveals the potential to considerably reduce lung cancer by intervention in occupational fields.

A Study on the boiler efficiency with selecting the uppermost burners in the 870MW opposite wall fired boiler (870MW 대향류 보일러에서 최상부층 버너 선택운전에 따른 보일러 효율변화 고찰)

  • Woo, Gwang-Yoon;Kim, Soo-Seok;Park, In-Chan;Ham, Young-Jun;Lee, Eung-Yoon
    • Plant Journal
    • /
    • v.13 no.2
    • /
    • pp.46-51
    • /
    • 2017
  • In this study, the boiler efficiency and the change of boiler combustion state with the burner operation of the uppermost layer of 870MW opposite fired coal boiler were measured. Test results showed that the boiler efficiency was high in the order of the uppermost layer simultaneous operation of the front and rear burners, the front burner, and the rear burner operation. When the front and rear burners were operated simultaneously, the heat absorption rate of water walls in the boiler furnace was uniform at four side, and the temperature deviation of the left and right steam on the convection front surface decreased. As the heat absorption rate of the boiler improved, the loss of boiler exhaust gas decreased and the coal supply amount decreased by 8 tons/hour compared to the operation of the rear burner. This will contribute not only to the reduction of fuel cost but also to the reduction of greenhouse gas emissions.

  • PDF

Construction of Fuzzy Logic Based on Knowledge for Greenery Warranty Systems (그린 보증시스템을 위한 지식기반 퍼지로직 구축)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyeong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.17-25
    • /
    • 2011
  • Green IT, composed term with Green and Information Technology(IT), use IT for energy savings and carbon emission reductions. Green IT went beyond the scope of greening IT, and recently it's concept is expanded as far as counterplan of climate change including greening other industries by IT. 85% of total greenhouse gas emissions from the energy sector and 20% of them comes from transport parts, so it is time to research IT for automotive industry. In this paper, we take up the knowledge based fuzzy logic to provide life cycle analysis associated with greenhouse gas emissions for industry produced warranty claims frequently such as automobile industry. We propose a analysis method of warranty claims using expert knowledge about the warranty in car exhaust systems related to greenhouse gas emissions, past test results of malfunction, analysis of past field data, and warranty data. Furthermore, we propose life knowledge-based GWS (Greenery Warranty System). We demonstrate the applicability of IT in eco-friendly automotive industry by implementing knowledge-based fuzzy logic and applying.