• Title/Summary/Keyword: Exergy analysis

Search Result 112, Processing Time 0.016 seconds

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference (핀치포인트온도차에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.476-483
    • /
    • 2016
  • An organic Rankine cycle for ocean thermal energy conversion system is a generating cycle using the temperature difference between surface water and deep water of the ocean. The working fluid is an important factor in the thermodynamic performance of an organic Rankine cycle. There is pinch point analysis as thermodynamic analysis of an organic Rankine cycle. This study performed a thermodynamic performance analysis according to variation in the pinch point temperature difference in heat exchangers and variation of outlet temperature of heat source and heat sink. It analyzed the thermodynamic performance by applying seven types of simple working fluids in a simple Rankine cycle for ocean thermal energy conversion that was designed according to pinch point analysis. As a result of the performance analysis, cycle irreversibility and total exergy destruction factor more decreased, and second law efficiency more increased in the lower pinch point temperature difference and temperature variation of heat source and heat sink in heat exchangers. In addition, the irreversibility changed greatly at a point that occurred in the thermodynamic variation. Among the selected working fluids, RE245fa2 showed the best thermodynamic performance, and the performance of all working fluids was observed to be similar. It needs a strict theoretical basis about diverse factors with thermodynamic performances in selecting heat exchangers and working fluids.

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.