• Title/Summary/Keyword: Exergy analysis

검색결과 112건 처리시간 0.036초

증기의 감온·감압과정에서의 엑서지 손실 및 저감방안 분석 (The Analysis on Exergy Loss and its Reduction Methods in Steam Desuperheating and Depressurizing Process)

  • 이중용;이찬
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.19-26
    • /
    • 2015
  • The present paper presented and applied an exergy analysis method to evaluate the magnitudes and the locations of exergy losses in the conventional desuperheating and depressurizing process of high pressure and temperature steam delivery system. In addition, for the reduction of exergy losses occurred in conventional process, the present study proposed new alternative processes in which the pressure reducing valve and the desuperheater of conventional process are substituted with steam turbine and heat exchanger, and their effects on exergy loss reduction and exergy efficiency improvement are theoretically investigated and compared. From the present analysis results, the total exergy loss caused in conventional desuperheating and depressurizing process accounted for 66.5% of exergy input and 85% of the total exergy loss was due to the mixing between steam and cold water(e.g desuperheating). However, it was shown from the present analysis results that the present alternative processes can additionally reduce exergy loss by maximum 92.7% of the total exergy loss in conventional process, and can also produce additional and useful energy, the electricity of 220.6 kWh and the heat of 54.3 MJ/hr.

엑서지 해석에 기초한 메탄올합성공정의 손실예방책 연구 (A Study of Loss Prevention for Methanol Synthesis Process Based on Exergy Analysis)

  • 조효은;정연수
    • 청정기술
    • /
    • 제6권2호
    • /
    • pp.129-137
    • /
    • 2000
  • 역수성가스반응과 메탄올형성반응을 연계한 메탄올합성공정에 대한 엑서지 해석을 수행하였다. 실험자료를 이용하여 공정을 모사하였으며 공정모사의 결과를 이용하여 엑서지 해석을 수행했다. 구동엑서지 손실과 물질엑서지 손실을 각각 정의하였고 정량화 하였다. 해석결과를 바탕으로 엑서지 손실의 위치, 크기, 원인과 개선 가능방법 등을 제시하였다. 엑서지 해석은 오염방지를 위한 손실예방책을 발전시키고 나아가 산업생태학에 적용할 수 있는 타당한 과학적 근거가 될 수 있음을 알 수 있었다.

  • PDF

물의 T-s 선도 상에서 엑서지 및 엑서지율의 고찰 (Consideration of Exergy and Exergy Ratio on T-s Chart of Water)

  • 김덕진;김덕봉
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.827-832
    • /
    • 2009
  • Exergy is the amount of reversible work obtainable when some matter is brought to a state of thermodynamic equilibrium with ambient. This exergy is availability or useful work induced from carnot cycle, and this can calculate the irreversible loss work which occurs within any thermal or power cycle. The exergy ratio is the value of exergy divided by enthalpy of ambient reference, where the quality of energy or enthalpy in substances is evaluated by exergy ratio. Exergy is very important in optimal design method of thermal system or each component, and the value of exergy at given state is calculated by equation. Here, designer can easily understand and find the value of enthalpy because enthalpy is graphically drawn in chart, however exergy did not. In this paper, exergy and exergy ratio of air were drawn on temperature-entropy chart, and we wish to this chart is a help to design, analysis and education.

  • PDF

엑서지를 이용한 대형 발전용 가스터빈의 부분부하 성능 분석 (Exergy-Based Performance Analysis of Heavy-duty Gas Turbine in Part-Load Operating Conditions)

  • 송태원;손정락;김재환;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.751-758
    • /
    • 2001
  • Exergy concept is applied to the analysis of part-load performance of gas turbine engine. Exergy is a useful tool to find the source of irreversibility in thermal system. In this study, details of the performance characteristics of a heavy-duty gas turbine, l50MW-class GE 7FA model, are described by theoretical investigations with exergy analysis. Result shows that exergy destruction rate of gas turbine increases with decreased load, which means increase of irreversibility. Also, it is found that variations of IGV angle and amount of cooling air for turbine blades are closely related to the inefficiencies of compressor and turbine, respectively.

  • PDF

지열을 이용한 매음리 지역난방에 관한 에너지 및 엑서지 분석 (Energy and Exergy Analysis of Maeeum-Ri Geothermal District Heating System)

  • 김진상
    • 한국지열·수열에너지학회논문집
    • /
    • 제5권2호
    • /
    • pp.13-19
    • /
    • 2009
  • This study describes energy and exergy analysis of the Maeeum-Ri Geothermal District Heating System(MGDHS) of Ganghwa Island, Incheon, Korea. Design data are used to assess the performance of the geothermal district heating system. Geothermal resources of MGDHS are found to be low quality with specific exergy index of 0.029. Exergy losses occur in the pumps and heat exchangers as well as in the geothermal Quid and direct discharge. As a result, the total exergy losses accounts for 5.2% in pumps, 47% in the discharge, and 3.3% in heat exchanger based on the total exergy input to the entire MGDHS. The overall energy and exergy efficiencies of the system are found to be 28.8% and 44.5%, respectively.

  • PDF

현열 축열조의 성능에 관한 엑서지 해석 (Exergy analysis on the storage performance of the sensible heat storage unit)

  • 김시범;권순석
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.176-182
    • /
    • 1988
  • The exergy analysis on the heat storage performance of the senible heat storage unit which consists of the heat storage material in the concentric annulus and the hot fluid flowing through the inner tube is performed. Heat transfer characteristics which are necessary for the performance of the exergy analysis is obtained from the energy balance equations and the second law of thermodynamics. As the index of heat storage performance, the exergy lossnumber $N_{s}$, and exergy storage ratio from the concepts of the second law of thermodynamics are defined. Results are ovtained for the grometry of the storage unit, the Biot number Bi, ambient temperature $T_{o}$ as parameters. From these results the exergy storage ratio can be considered as the efficiency of the hat storage unit and is introduced as a guide to design.

  • PDF

Energy and exergy analysis of CI engine dual fuelled with linseed biodiesel and biogas

  • S. Lalhriatpuia;Amit Pal
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.213-222
    • /
    • 2022
  • Our overdependence on the limited supply of fossil fuel with the burden of emission as a consequence of its utilization has been a major concern. Biodiesel is emerging as a potential diesel substitution for its similar performance, with the additional benefits of emitting lesser emissions. Due to the easy availability of feedstock for Biogas production, Biogas is studied for its use in CI engines. In this study, we considered Linseed Biodiesel and Biogas to run on dual fuel mode in a CI engine. An energy and exergy analysis was conducted to study the rate of fuel energy and exergy transformation to various other processes. Exergy relocation to exhaust gases was observed to be an average of 5% more for dual fuel mode than the diesel mode, whereas exergy relocation to the diesel mode was observed to be more than the dual fuel modes. Also, exergy loss to exhaust gas is observed to be more than the exergy transferred to cooling water or shaft. The exergy efficiency observed for biodiesel-biogas mode is only lesser by 3% compared to diesel-biogas mode, suggesting Biodiesel can be a substitute fuel for diesel.

심랭식공기분리공정에서 질소증류탑의 엑서지 해석 (Exergy Analysis of Nitrogen Distillation Column in the Cryogenic Air Separation Process)

  • 용평순;이성철
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.145-150
    • /
    • 2002
  • The distillation column is one of large energy consumable units in the cryogenic air separation process and the accurate energy analysis of this unit is necessary for choice of energy saving process. In this work, the energy method was adopted for energy analysis of a cryogenic nitrogen distillation column. In order to designing the energy saving distillation column, the exergy distribution of feed air, exergy efficiency and exergy loss for process condition was investigated and the optimal process condition to minimize the exergy loss was found. The result from this work can be used as a guideline for the choice of the process design conditions and efficiency improvement of cryogenic distillation column.

Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm

  • Talebi, Saeed;Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2928-2938
    • /
    • 2020
  • A light water nuclear Reactor has been exergy analyzed, and the rate of irreversible exergy loss and exergy destruction is calculated for each of its components. The ratio of these losses compared to the total input exergy loss is calculated, which shows that most irreversible losses occur in the reactors, turbines, steam generators, respectively, as well as in the downstream operations. The main aim of this paper is to optimize the power plant using an innovative firefly algorithm and then to propose a novel strategy to improve the overall performance of the plant. As shown in the results, the exergy destruction rate of the plant decreased by 1.18% using the firefly method, and the exergy efficiency of the plant reached 29.3% comparing to the operational amount of 28.99%. Also, the results of the firefly optimization process compared to the Genetic algorithm and gravitational search algorithm to study the accuracy of the model for exergy analysis fitness problems in the power plants and the results of this comparison has shown that the results are nearly similar in the mentioned methods. However, the firefly is faster and more accurate in limited iterations.

습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석 (Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles)

  • 김경훈;김세웅;고형종
    • 에너지공학
    • /
    • 제18권2호
    • /
    • pp.93-100
    • /
    • 2009
  • 습식압축으로 압축소요동력을 줄이고 재생기로 배기가스 에너지를 회수함으로써 열효율을 향상시킬 수 있는 습식압축 재생 브레이튼 사이클에 대하여 엑서지 해석을 수행하였다. 해석모델을 통하여 시스템의 엑서지 효율과 요소별 엑서지 파괴비 및 배기가스로 인한 엑서지 손실비에 미치는 압력비와 물분사율의 영향을 조사하였다. 전형적인 운전조건에 대한 계산 결과 습식압축 재생 가스터빈 사이클에 의하여 엑서지 효율을 상당히 향상시킬 수 있음을 확인하였다. 물 분사 효과는 배기가스의 엑서지 손실의 감소와 출력 동력의 증가로 나타난다.