이른 시스템 개발 단계에서 요구사항 에러를 찾기 위해서는 시스템의 행위가 정형 언어로 표현되어야 하고, 도달성 분석이나 싸이클 탐색과 같은 분석 기술로 분석해야 한다. 하지만 이 기술들은 시스템의 상태 공간 순회를 기반으로 하기 때문에 시스템이 복잡해지면 상태 폭발 문제가 발생할 수 있다. 즉, 순회를 위한 메모리와 수행 시간이 큰 상태 공간 때문에 기하 급수적으로 증가한다. 본 논문에서는 병행 시스템에서 이러한 문제가 나타나는 원인을 지적하고 순회에 필요한 메모리를 줄이기 위해서 병행적 상태 공간을 합성하지 않고 순회한다. 또한 수행 시간을 줄이기 위해서 방문 기록을 최소한으로 유지하는 새로운 기술을 제시한다. 마지막으로 이 기법이 효과적임을 실험 결과를 통해 보인다.
최근 스마트 단말을 통한 유해 콘텐츠의 보급이 확산되면서 스마트 단말에서 유해 콘텐츠를 차단하기 위한 소프트웨어의 필요성이 증가하고 있다. 이에 본 논문에서는 안드로이드 기반 스마트 단말에서 실행 이벤트의 분석을 통하여 유해 콘텐츠를 탐지 할 수 있는 방법을 제안한다. 본 논문에서는 안드로이드기반 스마트 단말에서 스트리밍 서비스가 실행되는 구조 및 관련 실행 이벤트들의 연관성을 분석하였으며, 분석 결과를 토대로 스마트 단말에서 유해 콘텐츠의 실행 여부를 판단할 수 있는 소프트웨어를 개발하였다.
Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.
많은 게임 앱이나 금융 앱들의 경우, 동적 역공학 공격을 방어하기 위해 에뮬레이터 탐지 기능을 탑재하고 있다. 그러나 기존 안드로이드 에뮬레이터 탐지 방법들은, 실제 기기와 유사해진 최신 모바일 게임용 에뮬레이터를 탐지하는데 한계가 있다. 이에 본 논문에서는 Houdini 모듈과 라이브러리 문자열 기반으로 모바일 게임용 에뮬레이터를 효과적으로 탐지하는 기법을 제안한다. 구체적으로, bionic의 libc 라이브러리에 포함된 특정 문자열, Houdini 관련된 시스템 콜 수행과정 분석과 메모리 매핑을 통해, 잘 알려진 Nox와 LD Player 에뮬레이터를 탐지하는 기법을 제시한다.
International Journal of Computer Science & Network Security
/
제23권1호
/
pp.46-52
/
2023
With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.
최근 딥 러닝을 중심으로 빠르게 발전하고 있는 기계학습 분류 알고리즘은 기존의 방법들보다 뛰어난 성능으로 인하여 주목받고 있다. 딥 러닝 중에서도 Convolutional Neural Network(CNN)는 영상처리에 뛰어나 첨단 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)에서 많이 사용되고 있는 추세이다. 하지만 차량용 임베디드 환경에서 CNN을 소프트웨어로 동작시켰을 때는 각 Layer마다 연산이 반복되는 알고리즘의 특성으로 인해 수행시간이 길어져 실시간 처리가 어렵다. 본 논문에서는 임베디드 환경에서 CNN의 실시간 처리를 위하여 Convolution 연산 및 기타 연산들을 병렬로 처리하여 CNN의 속도를 향상시키는 하드웨어 구조를 제안한다. 제안하는 하드웨어의 성능을 검증하기 위하여 Xilinx ZC706 FPGA 보드를 이용하였다. 입력 영상은 $36{\times}36$ 크기이며, 동작주파수 100MHz에서 하드웨어 수행시간은 약 2.812ms로 실시간 처리가 가능함을 확인했다.
Meltdown과 Spectre는 프로세서의 비순차 및 추측 실행의 취약점을 이용해 일반 사용자 권한으로 접근할 수 없는 메모리를 읽는 공격이다. 이 공격을 방지하기 위한 대응 패치가 공개되었으나, 적용 가능한 패치가 없는 오래된 시스템 등은 여전히 이 공격에 취약하다고 할 수 있다. 이 공격을 탐지하기 위한 연구가 이루어지고 있지만 대부분 동적 식별 방법을 제안하고 있다. 따라서 본 논문은 Meltdown과 Spectre 악성코드를 실행하지 않고 파일 상태에서 탐지가 가능한 시그니처를 제안한다. 이를 위해 GitHub에 등록된 13종의 악성코드에 대한 바이너리 패턴 분석을 수행하였다. 이를 바탕으로 공격 파일 식별 방법을 제안하였으며, 실험결과 분석한 악성코드와 현재 악성코드 데이터베이스에 등록된 19개의 변종 악성코드를 100% 식별했고, 2,317개의 정상파일 중 0.94%(22건)의 오탐률을 보였다.
사물인터넷이 4차 산업혁명을 주도할 새로운 기술로 각광받고 있으며, 이미 많은 기술과 제품들이 발표되어 인간의 삶의 질을 높이는 데 많은 기여를 하고 있다. 본 논문에서는 건물의 엘리베이터 등에서 얼굴 검출 및 얼굴 인식에 사용할 수 있는 시스템을 개발한다. 얼굴 검출 시스템은 하르 직렬 분류기를 사용하며, 얼굴 인식 시스템에는 수행 시간을 줄이기 위하여 본 논문에서 파이썬 언어로 구현된 주성분 분석(PCA)이 얼굴 인식을 위한 고유 얼굴(eigenface) 계산에 사용된다. 데이터베이스에 저장된 얼굴과 얼굴 검출 시스템의 결과로부터 얼굴을 인식하기 위하여 SVM 또는 유크리디안 측정이 사용된다. 제안된 시스템은 OpenCV를 사용하여 라즈베리파이 3에 구현된다. 본 논문에서 구현된 주성분 프로그램의 성능을 구하기 위하여 기존의 주성분 프로그램과 비교하여 얼굴 인식율과 수행시간을 비교하였다. 성능 평가를 위하여 ORL 얼굴 데이터베이스에서 40명의 얼굴에 대하여 각각 10 개의 이미지를 이용하여 학습에 200, 테스트에 200개의 이미지를 사용하였다. 본 논문에서 제안된 PCA와 유클리디안 측정을 이용한 경우 약 93%, SVM의 경우 약 96% 이상의 얼굴 인식률을 얻었다. 그러나 수행시간은 본 논문에서 구현된 PCA를 사용할 경우 약 0.11초, 기존 PCA의 경우 약 1.1초로 약 1/10로 수행 시간을 줄일 수 있었다. 그러므로 본 논문에서 개발된 시스템은 실시간 결과가 필요한 보안 시스템, 엘리베이터 모니터링 시스템 등에 적용할 수 있을 것으로 기대된다.
프레스 공정은 가열 또는 가열하지 않은 상태의 재료에 힘을 가해 원하는 형태로 변형시켜 제품을 만드는 압축 가공 과정이다. 짧은 시간의 연속 압축을 통해 제품을 생산하는 프레스 장비의 특성상 제품 불량은 연속적으로 발생하며 이러한 문제를 해결하기 위한 시스템은 다양한 기술을 이용하여 개발되고 있다. 본 논문은 불량을 탐지하는 인공지능 알고리즘을 기반으로 실시간 불량탐지 시스템을 제안한다. 프레스 장치에 각종 센서를 부착하여 장비의 상태와 불량과의 관계를 빅데이터 플랫폼을 기반으로 정의하고 수집한다. 수집된 데이터를 기반으로 인공지능 알고리즘을 개발하고 개발된 알고리즘을 임베디드 보드를 이용하여 구현함으로써 실제 현장에 적용하여 시스템의 실용성을 보이겠다.
테스트 케이스 우선 순위화는 회귀 테스팅이 시간 제약 하에서 주어진 모든 테스트 케이tm를 수행할 수 없을 때 테스트 케이스의 실행 순서를 스캐쥴링하는 것이다. 본 논문에서는 장기적인 회귀 테스팅 환경에서 과거의 테스트 실행 및 오류 검출 정보를 활용한 HED우선 순위화 방법을 제안하고, 이를 기존의 Random 및 LRU 방법과 비교하였다. 본 실험을 통해 몇 가지 중요한 통찰을 얻을 수 있었다. 첫째, 우선 순위화 방법들이 프로그램의 특성에 따라 성능 면에서 상호 보완적이라는 점이다. 오류를 찾는 테스트 케이스들을 많이 갖고 있는 프로그램의 경우에는 Random이 효과적이고, 상대적으로 오류를 찾는 테스트 케이스의 비율이 작은 경우에는 제안된 HED방법이 좋은 성능을 보였으며, 중간 정도인 경우에는 LRU 방법이 효과적이었다. 둘째, 전체적인 성능이 테스트 스위트의 크기에 영향을 많이 받는다는 점이다. 테스트 스위트의 크기를 달리하여 실험한 결과 오류의 수명 값과 그 성능 순위에 차이를 보였다. 마지막으로 전체 테스트 케이스의 $20\%$만을 실행하여도 전체 테스트 케이스 모두를 실행하는 것과 성능 면에서 유사한 결과를 얻을 수 있다는 점 등이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.