• 제목/요약/키워드: Execution based training

검색결과 80건 처리시간 0.023초

직업훈련 패러다임의 전환을 위한 지원체제 개선 방안 연구 (Improving the Support System for the Paradigm Shift in Vocational Training)

  • 이수경;김봄이
    • 실천공학교육논문지
    • /
    • 제15권2호
    • /
    • pp.299-309
    • /
    • 2023
  • 본 연구는 코로나19 위기 상황에 대처하기 위하여 직업훈련 사업별로 단선적으로 이루어져 왔던 원격훈련 도입 관련 제도 운영 실태에 대하여 심사에서부터 비용집행에 이르기까지의 과정을 주체별, 단계별, 절차별로 구분하여 문제점과 한계점을 분석하였다. 이후 이해관계자들의 의견을 다각적으로 수렴하여, 디지털·비대면 시대의 직업훈련 패러다임 전환에 부응할 수 있는 직업훈련 지원체제의 개선 방안을 제시하였다. 특히 기존 전통적인 집체훈련 중심의 프레임에서 벗어나 디지털·비대면 시대의 직업훈련 방향성을 수용할 수 있는 방향으로 훈련기관, 훈련과정의 심사·평가 제도가 혁신되어야 한다는 기본 전제하에, 사전 승인 심사 제도와 훈련기관 인증평가 제도의 개선방안을 제시하였다.

오류 데이타에 강한 자질 투영법 기반의 문서 범주화 기법 (Text Classification based on a Feature Projection Technique with Robustness from Noisy Data)

  • 고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.498-504
    • /
    • 2004
  • 본 논문은 자질 투영법을 사용한 새로운 문서 분류기를 제안한다. 제안된 문서 분류기는 학습 문서를 각 자질로의 투영으로써 표현한다. 문서를 위한 분류 작업은 투영된 각 자질로부터의 투표(voting)에 기인한다. 실험을 통해서 본 제안된 문서 분류기는 단순한 구조에도 불구하고 높은 성능을 보이고 있으며, 특히 기존의 문서 범주화 기법에서 높은 성능을 보여왔던 최근린법(k-NN)과 지지백터기계(SVM)와 비교했을 때 빠른 수행 속도와 오류 데이타가 많을 환경에서 높은 성능을 보인다는 장점이 있다. 또한 제안된 문서 분류기의 알고리즘이 매우 단순하기 때문에 분류기의 구현과 학습 과정이 쉽게 수행될 수 있다. 이러한 이유로 제안된 문서 분류기는 빠른 수행 속도와 견고성(robustness), 그리고 높은 성능을 요구하는 은서 범주화 응용 영역에 유용하게 사용될 수 있을 것이다.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

C-COMA: 동적 다중 에이전트 환경을 위한 지속적인 강화 학습 모델 (C-COMA: A Continual Reinforcement Learning Model for Dynamic Multiagent Environments)

  • 정규열;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권4호
    • /
    • pp.143-152
    • /
    • 2021
  • 다양한 실세계 응용 분야들에서 공동의 목표를 위해 여러 에이전트들이 상호 유기적으로 협력할 수 있는 행동 정책을 배우는 것은 매우 중요하다. 이러한 다중 에이전트 강화 학습(MARL) 환경에서 기존의 연구들은 대부분 중앙-집중형 훈련과 분산형 실행(CTDE) 방식을 사실상 표준 프레임워크로 채택해왔다. 하지만 이러한 다중 에이전트 강화 학습 방식은 훈련 시간 동안에는 경험하지 못한 새로운 환경 변화가 실전 상황에서 끊임없이 발생할 수 있는 동적 환경에서는 효과적으로 대처하기 어렵다. 이러한 동적 환경에 효과적으로 대응하기 위해, 본 논문에서는 새로운 다중 에이전트 강화 학습 체계인 C-COMA를 제안한다. C-COMA는 에이전트들의 훈련 시간과 실행 시간을 따로 나누지 않고, 처음부터 실전 상황을 가정하고 지속적으로 에이전트들의 협력적 행동 정책을 학습해나가는 지속 학습 모델이다. 본 논문에서는 대표적인 실시간 전략게임인 StarcraftII를 토대로 동적 미니게임을 구현하고 이 환경을 이용한 다양한 실험들을 수행함으로써, 제안 모델인 C-COMA의 효과와 우수성을 입증한다.

다층 레이어 퍼셉트론 기반 INS 내장형 컴퓨터에서의 실시간 중력교란 보상 (MLP Based Real-Time Gravity Disturbance Compensation in INS Embedded Computer)

  • 김현석;김형수;최윤혁;조윤철;박찬식
    • 한국항행학회논문지
    • /
    • 제27권5호
    • /
    • pp.674-684
    • /
    • 2023
  • 이 논문에서는 INS의 항법 정확도에 영향을 주는 중력 교란에 대한 실시간 예측기법으로 다층 퍼셉트론 모델을 제안하였다. 적합한 MLP 모델을 선정하기 위해서 학습 정확도 및 실행시간을 비교할 수 있게 신경망의 크기가 다른 4개의 모델을 설계하였다. 이 MLP 모델의 학습을 위해 해상 또는 육상의 지표면을 따라 이동하는 물체의 위치 및 중력교란 데이터를 사용하였으며, 중력교란 데이터의 계산은 2160차의 EGM2008을 SHM을 이용하여 이루어졌다. 학습 정확도 평가에서는 MLP4가 가장 우수한 것으로 확인 되었고, 이후 실행시간을 측정하기 위해 학습이 완료된 4개 모델의 가중치와 바이어스 항들을 INS의 내장형 컴퓨터에 저장하여 MLP 모델을 구현하였다. 4개 모델 중 MLP4의 실행시간이 가장 짧은 것을 확인할 수 있었다. 이러한 연구 결과는 향후 중력 교란 보상을 통한 INS의 항법 정확도를 향상시키는데 활용될 수 있을 것으로 기대된다.

자발적 단순성지향 생활양식(Voluntary Simplicity Life Style)에 기초한 환경운동의 방향 (A Direction of the Environmental Movement based on Voluntary Simplicity Life Style)

  • 윤숙현
    • 대한가정학회지
    • /
    • 제42권1호
    • /
    • pp.1-16
    • /
    • 2004
  • The purpose of this study is to understand the relationship between the environmental movement and voluntary simplicity life style. The results of this study are as follows: First, both voluntary simplicity life style and the environmental movement are concepts which became the center of public interest because of the evil practices appeared in the process of the development of capitalism. Second, the level of consciousness of environment is comparatively high, but the level of the power of execution is comparatively low as a whole. In the case of Korea, people have not yet the mature responsibilities of citizenship. It is very important to enforce different informal educations in order to increase the effectiveness of the environmental movement. Home training based on voluntary simplicity life style is the most important informal education for the purpose of increasing the effectiveness of the environmental movement. Consequently, for the preservation of environment we need to do our best endeavors such as home training based on voluntary simplicity life style, environmental education based on our social and cultural background, and more powerful administrative measures which is administrative support rather than administrative control.

시뮬레이션 기반 실습 교육이 간호대학생의 눈치, 문제해결 능력, 회복 탄력성에 미치는 효과 (The Effects of Simulation-based Hands-on Training on Nursing Students' Nunchi, Problem-Solving Ability, and Resilience)

  • 신승호;이정원;김창태;신소홍;송미숙
    • 문화기술의 융합
    • /
    • 제6권2호
    • /
    • pp.397-407
    • /
    • 2020
  • 본 연구는 간호대학생의 핵심역량인 시뮬레이션 기반 실습 교육이 눈치, 문제해결 능력, 회복 탄력성에 미치는 효과를 알아보기 위해 시도되었다. 연구 결과 눈치의 하위변인 눈치 파악이 유의미하게 증가하였고, 문제해결 능력과 하위변인 문제 인식, 정보수집, 분석능력, 확산적 사고, 의사결정, 기획력, 실행과 모험 감수, 평가, 피드백에 유의미하게 증가하였다. 회복 탄력성과 하위변인 통제성, 긍정성, 사회성이 유의미하게 증가하였다. 이러한 결과는 시뮬레이션 기반 실습 교육이 간호 대학생의 핵심역량을 강화할 수 있다는 것이므로 현장감 있는 실습 모듈 개발을 위한 기반이 마련되어야 할 것이다.

Machine Learning-Based Programming Analysis Model Proposal : Based on User Behavioral Analysis

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.179-183
    • /
    • 2020
  • The online education platform market is developing rapidly after the coronavirus infection-19 pandemic. As school classes at various levels are converted to non-face-to-face classes, interest in non-face-to-face online education is increasing more than ever. However, the majority of online platforms currently used are limited to the fragmentary functions of simply delivering images, voice and messages, and there are limitations to online hands-on training. Indeed, digital transformation is a traditional business method for increasing coding education and a corporate approach to service operation innovation strategy computing thinking power and platform model. There are many ways to evaluate a computer programmer's ability. Generally, piecemeal evaluation methods are used to evaluate results in time through coding tests. In this study, the purpose of this study is to propose a comprehensive evaluation of not only the results of writing, but also the execution process of the results, etc., and to evaluate the programmer's propensity habits based on the programmer's coding experience to evaluate the programmer's ability and productivity.

Proposed Efficient Architectures and Design Choices in SoPC System for Speech Recognition

  • Trang, Hoang;Hoang, Tran Van
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.241-247
    • /
    • 2013
  • This paper presents the design of a System on Programmable Chip (SoPC) based on Field Programmable Gate Array (FPGA) for speech recognition in which Mel-Frequency Cepstral Coefficients (MFCC) for speech feature extraction and Vector Quantization for recognition are used. The implementing process of the speech recognition system undergoes the following steps: feature extraction, training codebook, recognition. In the first step of feature extraction, the input voice data will be transformed into spectral components and extracted to get the main features by using MFCC algorithm. In the recognition step, the obtained spectral features from the first step will be processed and compared with the trained components. The Vector Quantization (VQ) is applied in this step. In our experiment, Altera's DE2 board with Cyclone II FPGA is used to implement the recognition system which can recognize 64 words. The execution speed of the blocks in the speech recognition system is surveyed by calculating the number of clock cycles while executing each block. The recognition accuracies are also measured in different parameters of the system. These results in execution speed and recognition accuracy could help the designer to choose the best configurations in speech recognition on SoPC.

심층신경망을 이용한 PCB 부품의 인쇄문자 인식 (Recognition of Characters Printed on PCB Components Using Deep Neural Networks)

  • 조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.6-10
    • /
    • 2021
  • Recognition of characters printed or marked on the PCB components from images captured using cameras is an important task in PCB components inspection systems. Previous optical character recognition (OCR) of PCB components typically consists of two stages: character segmentation and classification of each segmented character. However, character segmentation often fails due to corrupted characters, low image contrast, etc. Thus, OCR without character segmentation is desirable and increasingly used via deep neural networks. Typical implementation based on deep neural nets without character segmentation includes convolutional neural network followed by recurrent neural network (RNN). However, one disadvantage of this approach is slow execution due to RNN layers. LPRNet is a segmentation-free character recognition network with excellent accuracy proved in license plate recognition. LPRNet uses a wide convolution instead of RNN, thus enabling fast inference. In this paper, LPRNet was adapted for recognizing characters printed on PCB components with fast execution and high accuracy. Initial training with synthetic images followed by fine-tuning on real text images yielded accurate recognition. This net can be further optimized on Intel CPU using OpenVINO tool kit. The optimized version of the network can be run in real-time faster than even GPU.