본 연구는 코로나19 위기 상황에 대처하기 위하여 직업훈련 사업별로 단선적으로 이루어져 왔던 원격훈련 도입 관련 제도 운영 실태에 대하여 심사에서부터 비용집행에 이르기까지의 과정을 주체별, 단계별, 절차별로 구분하여 문제점과 한계점을 분석하였다. 이후 이해관계자들의 의견을 다각적으로 수렴하여, 디지털·비대면 시대의 직업훈련 패러다임 전환에 부응할 수 있는 직업훈련 지원체제의 개선 방안을 제시하였다. 특히 기존 전통적인 집체훈련 중심의 프레임에서 벗어나 디지털·비대면 시대의 직업훈련 방향성을 수용할 수 있는 방향으로 훈련기관, 훈련과정의 심사·평가 제도가 혁신되어야 한다는 기본 전제하에, 사전 승인 심사 제도와 훈련기관 인증평가 제도의 개선방안을 제시하였다.
본 논문은 자질 투영법을 사용한 새로운 문서 분류기를 제안한다. 제안된 문서 분류기는 학습 문서를 각 자질로의 투영으로써 표현한다. 문서를 위한 분류 작업은 투영된 각 자질로부터의 투표(voting)에 기인한다. 실험을 통해서 본 제안된 문서 분류기는 단순한 구조에도 불구하고 높은 성능을 보이고 있으며, 특히 기존의 문서 범주화 기법에서 높은 성능을 보여왔던 최근린법(k-NN)과 지지백터기계(SVM)와 비교했을 때 빠른 수행 속도와 오류 데이타가 많을 환경에서 높은 성능을 보인다는 장점이 있다. 또한 제안된 문서 분류기의 알고리즘이 매우 단순하기 때문에 분류기의 구현과 학습 과정이 쉽게 수행될 수 있다. 이러한 이유로 제안된 문서 분류기는 빠른 수행 속도와 견고성(robustness), 그리고 높은 성능을 요구하는 은서 범주화 응용 영역에 유용하게 사용될 수 있을 것이다.
Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.
다양한 실세계 응용 분야들에서 공동의 목표를 위해 여러 에이전트들이 상호 유기적으로 협력할 수 있는 행동 정책을 배우는 것은 매우 중요하다. 이러한 다중 에이전트 강화 학습(MARL) 환경에서 기존의 연구들은 대부분 중앙-집중형 훈련과 분산형 실행(CTDE) 방식을 사실상 표준 프레임워크로 채택해왔다. 하지만 이러한 다중 에이전트 강화 학습 방식은 훈련 시간 동안에는 경험하지 못한 새로운 환경 변화가 실전 상황에서 끊임없이 발생할 수 있는 동적 환경에서는 효과적으로 대처하기 어렵다. 이러한 동적 환경에 효과적으로 대응하기 위해, 본 논문에서는 새로운 다중 에이전트 강화 학습 체계인 C-COMA를 제안한다. C-COMA는 에이전트들의 훈련 시간과 실행 시간을 따로 나누지 않고, 처음부터 실전 상황을 가정하고 지속적으로 에이전트들의 협력적 행동 정책을 학습해나가는 지속 학습 모델이다. 본 논문에서는 대표적인 실시간 전략게임인 StarcraftII를 토대로 동적 미니게임을 구현하고 이 환경을 이용한 다양한 실험들을 수행함으로써, 제안 모델인 C-COMA의 효과와 우수성을 입증한다.
이 논문에서는 INS의 항법 정확도에 영향을 주는 중력 교란에 대한 실시간 예측기법으로 다층 퍼셉트론 모델을 제안하였다. 적합한 MLP 모델을 선정하기 위해서 학습 정확도 및 실행시간을 비교할 수 있게 신경망의 크기가 다른 4개의 모델을 설계하였다. 이 MLP 모델의 학습을 위해 해상 또는 육상의 지표면을 따라 이동하는 물체의 위치 및 중력교란 데이터를 사용하였으며, 중력교란 데이터의 계산은 2160차의 EGM2008을 SHM을 이용하여 이루어졌다. 학습 정확도 평가에서는 MLP4가 가장 우수한 것으로 확인 되었고, 이후 실행시간을 측정하기 위해 학습이 완료된 4개 모델의 가중치와 바이어스 항들을 INS의 내장형 컴퓨터에 저장하여 MLP 모델을 구현하였다. 4개 모델 중 MLP4의 실행시간이 가장 짧은 것을 확인할 수 있었다. 이러한 연구 결과는 향후 중력 교란 보상을 통한 INS의 항법 정확도를 향상시키는데 활용될 수 있을 것으로 기대된다.
The purpose of this study is to understand the relationship between the environmental movement and voluntary simplicity life style. The results of this study are as follows: First, both voluntary simplicity life style and the environmental movement are concepts which became the center of public interest because of the evil practices appeared in the process of the development of capitalism. Second, the level of consciousness of environment is comparatively high, but the level of the power of execution is comparatively low as a whole. In the case of Korea, people have not yet the mature responsibilities of citizenship. It is very important to enforce different informal educations in order to increase the effectiveness of the environmental movement. Home training based on voluntary simplicity life style is the most important informal education for the purpose of increasing the effectiveness of the environmental movement. Consequently, for the preservation of environment we need to do our best endeavors such as home training based on voluntary simplicity life style, environmental education based on our social and cultural background, and more powerful administrative measures which is administrative support rather than administrative control.
본 연구는 간호대학생의 핵심역량인 시뮬레이션 기반 실습 교육이 눈치, 문제해결 능력, 회복 탄력성에 미치는 효과를 알아보기 위해 시도되었다. 연구 결과 눈치의 하위변인 눈치 파악이 유의미하게 증가하였고, 문제해결 능력과 하위변인 문제 인식, 정보수집, 분석능력, 확산적 사고, 의사결정, 기획력, 실행과 모험 감수, 평가, 피드백에 유의미하게 증가하였다. 회복 탄력성과 하위변인 통제성, 긍정성, 사회성이 유의미하게 증가하였다. 이러한 결과는 시뮬레이션 기반 실습 교육이 간호 대학생의 핵심역량을 강화할 수 있다는 것이므로 현장감 있는 실습 모듈 개발을 위한 기반이 마련되어야 할 것이다.
International journal of advanced smart convergence
/
제9권4호
/
pp.179-183
/
2020
The online education platform market is developing rapidly after the coronavirus infection-19 pandemic. As school classes at various levels are converted to non-face-to-face classes, interest in non-face-to-face online education is increasing more than ever. However, the majority of online platforms currently used are limited to the fragmentary functions of simply delivering images, voice and messages, and there are limitations to online hands-on training. Indeed, digital transformation is a traditional business method for increasing coding education and a corporate approach to service operation innovation strategy computing thinking power and platform model. There are many ways to evaluate a computer programmer's ability. Generally, piecemeal evaluation methods are used to evaluate results in time through coding tests. In this study, the purpose of this study is to propose a comprehensive evaluation of not only the results of writing, but also the execution process of the results, etc., and to evaluate the programmer's propensity habits based on the programmer's coding experience to evaluate the programmer's ability and productivity.
This paper presents the design of a System on Programmable Chip (SoPC) based on Field Programmable Gate Array (FPGA) for speech recognition in which Mel-Frequency Cepstral Coefficients (MFCC) for speech feature extraction and Vector Quantization for recognition are used. The implementing process of the speech recognition system undergoes the following steps: feature extraction, training codebook, recognition. In the first step of feature extraction, the input voice data will be transformed into spectral components and extracted to get the main features by using MFCC algorithm. In the recognition step, the obtained spectral features from the first step will be processed and compared with the trained components. The Vector Quantization (VQ) is applied in this step. In our experiment, Altera's DE2 board with Cyclone II FPGA is used to implement the recognition system which can recognize 64 words. The execution speed of the blocks in the speech recognition system is surveyed by calculating the number of clock cycles while executing each block. The recognition accuracies are also measured in different parameters of the system. These results in execution speed and recognition accuracy could help the designer to choose the best configurations in speech recognition on SoPC.
Recognition of characters printed or marked on the PCB components from images captured using cameras is an important task in PCB components inspection systems. Previous optical character recognition (OCR) of PCB components typically consists of two stages: character segmentation and classification of each segmented character. However, character segmentation often fails due to corrupted characters, low image contrast, etc. Thus, OCR without character segmentation is desirable and increasingly used via deep neural networks. Typical implementation based on deep neural nets without character segmentation includes convolutional neural network followed by recurrent neural network (RNN). However, one disadvantage of this approach is slow execution due to RNN layers. LPRNet is a segmentation-free character recognition network with excellent accuracy proved in license plate recognition. LPRNet uses a wide convolution instead of RNN, thus enabling fast inference. In this paper, LPRNet was adapted for recognizing characters printed on PCB components with fast execution and high accuracy. Initial training with synthetic images followed by fine-tuning on real text images yielded accurate recognition. This net can be further optimized on Intel CPU using OpenVINO tool kit. The optimized version of the network can be run in real-time faster than even GPU.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.