• Title/Summary/Keyword: Excitation function

Search Result 451, Processing Time 0.031 seconds

A study on Self-excitations in Laminar Lifted Coflow-jet Flames (층류 동축류 제트 부상화염에서의 자기진동에 관한 실험적 연구)

  • Ban, Gyu Ho;Lee, Won June;Park, Jeong;Keel, Sang-In;Yun, Jin-Han;Lim, In Gwon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.129-132
    • /
    • 2014
  • A study on laminar coflow jet flames diluted with helium and nitrogen has been conducted to investigate self-excitations. The stability map was provided with a function of nozzle exit velocity and fuel mole fractions of propane or methane. The results show that there exist three types of self-excitations; (1) buoyancy-driven self-excitation (BDSE), (2) Lewis number induced self-excitation coupled with buoyancy (LCB) and (3) Lewis number induced self-excitation (LISE).

  • PDF

Experimental Study on Comparison of Buoyancy Driven and Lewis Number Induced Self-excitations in Laminar Lifted Coflow-jet Flames. (층류 동축류 제트 부상화염에서 부력에 의한 자기진동과 루이스 수에 의한 자기진동 비교에 관한 실험적 연구)

  • Ban, Gyu Ho;Lee, Won June;Park, Jeong;Keel, Sang-In;Yun, Jin-Han;Lim, In Gwon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.367-369
    • /
    • 2014
  • A study on laminar coflow jet flames diluted with helium and nitrogen has been conducted to investigate self-excitations. The stability map was provided with a function of nozzle exit velocity and fuel mole fractions of propane or methane. The results show that there exist three types of self-excitations; (1) buoyancy-driven self-excitation (BDSE), (2) Lewis number induced self-excitation coupled with buoyancy (LCB) and (3) Lewis number induced self-excitation (LISE).

  • PDF

Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing (틸팅패드 저널베어링의 유막 강성 및 감쇠계수에 대한 실험적 연구)

  • Ha, Hyun-Cheon;Yang, Seong-Heon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.32-38
    • /
    • 1999
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

A Study of Function Verification of Digital Excitation System with Real Time Simulator (시뮬레이터 탑재형 디지털 여자시스템 기능검증 시험에 관한 연구)

  • Ryu, Ho-Seon;Shin, Man-Su;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1191-1192
    • /
    • 2011
  • We released new triple redundant digital excitation system with real time generator-turbine simulator. One of its great merits is the real time generator-turbine simulator when it was compared with the other products. If excitation system is tripped by unexpected faults, Maintenance man can do easily performance test of digital excitation control board, sequence relay and thyristor switching device of phase controlled rectifier without manufacturer's support. For the verification of this system, It was tested with an actual excitation system implemented on 5kVA M-G Set. After finishing the tests, the trial product will be installed and operated at a 500MW thermal power plant.

  • PDF

Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing (틸팅패드 저어널 베어링의 유막 강성 및 감쇠 계수에 대한 실험적 연구)

  • Ha, Hynn Cheon;Yang, Seong Heon
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

Combinatorial continuous non-stationary critical excitation in M.D.O.F structures using multi-peak envelope functions

  • Ghasemi, S. Hooman;Ashtari, P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.895-908
    • /
    • 2014
  • The main objective of critical excitation methods is to reveal the worst possible response of structures. This goal is accomplished by considering the uncertainties of ground motion, which is subjected to the appropriate constraints, such as earthquake power and intensity limit. The concentration of this current study is on the theoretical optimization aspect, as is the case with the majority of conventional critical excitation methods. However, these previous studies on critical excitation lead to a discontinuous power spectral density (PSD). This paper introduces some critical excitations which contain proper continuity in frequency domain. The main idea for generating such continuous excitations stems from the combination of two continuous functions. On the other hand, in order to provide a non-stationary model, this paper attempts to present an appropriate envelope function, which unlike the previous envelope functions, can properly cover the natural earthquakes' accelerograms based on multi-peak conditions. Finally, the proposed method is developed into the multiple-degree-of-freedom (M.D.O.F) structures.

Dynamic response for electromechanical integrated toroidal drive to electric excitation

  • Xu, Lizhong;Hao, Xiuhong
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.635-650
    • /
    • 2007
  • In this paper, the equivalent exciting force caused by electric excitation is derived. By dividing load and displacement vectors into mean values and time-varying ones, the dynamic equations of the system are transformed into linear ones for time-varying portion of the displacements. The analytical equations of the forced time responses of the drive system to electric excitations are obtained. Using the Laplace transformation, the transfer function of the drive system is obtained. These equations are used to analyze the time and frequency responses of the drive system to the electric excitation. It is known that electric excitation can cause forced responses of the drive system, the total dynamic responses are decided by three phase exciting voltages, exciting frequency and natural frequencies of the drive system, and the drive parameters have obvious influence on the time and frequency responses.

Analysis of Operating Characteristic of Self Excited Induction Generator with Steinmetz Connection (스타인메츠결선 자기여자 유도발전기의 운전특성 분석)

  • Kang, Sang-Su;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.383-387
    • /
    • 2008
  • This paper analyzes the operation characteristics of a self excited induction generator with Steinmetz connection. For this analysis, the symmetrical components analysis is used to obtain the related expressions and the excitation capacitance and the magnetizing reactance are determined in turn by the condition of self excitation which includes the input impedance of the generator as viewed across load terminals. Two simultaneous equations of the condition of self excitation itself are solved by using the real and imaginary function in an application software. This method is applied to simulate the operation characteristics when the generator is driven at rated speed and the specified excitation capacitor is connected across the lagging phase. The results show that better operation characteristics except generated frequency are obtained by using relatively large excitation capacitance and resistive load.

Corona generated Radio Interference of the 750 kV AC Bundle Conductors in Sandy and Dusty Weather Condition in the High Altitude Area

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Wan, Bao-Quan;Pei, Chun-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1704-1711
    • /
    • 2014
  • Sandy and dusty weather condition often occurs in the high altitude areas of China, which may greatly influence the corona generated radio interference (RI) characteristics of the bundle conductors of 750 kV AC power transmission lines. Corona generated RI of the conductors of the 750 kV AC power transmission lines used in practice is measured by EMI receiver with a coupling circuit and a coupling capacitor connected between the high voltage side and the earth side in fine and sandy and dusty condition. The measuring frequency is 0.5 MHz, and the quasi-peak detection is used. RI excitation function is calculated based on the corona RI current measured by the EMI receiver. Corona generated RI characteristics were analyzed from sand concentration and sand particle size. The test result shows that the corona generated RI excitation function is influenced by the sandy and dusty condition. Corona discharge of the conductors is more serious in sandy and dusty condition with an ultraviolet (UV) detector. Corona generated RI excitation function increases with the increase of sand concentration and also increases with the increase of particle size.

Experimental Verifications of Fatigue Crack Identification Method Using Excitation Force Level Control for a Cantilever Beam (외팔보에 대한 가진력수준제어를 통한 피로균열규명기법의 실험적 검증)

  • Kim Do-Gyoon;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1467-1474
    • /
    • 2004
  • In this study, a new damage identification method for beam-like structures with a fatigue crack is proposed. which does not require comparative measurement on an intact structure but require several measurements at different level of excitation forces on the cracked structure. The idea comes from the fact that dynamic behavior of a structure with a fatigue crack changes with the level of the excitation force. The 2$^{nd}$ spatial derivatives of frequency response functions along the longitudinal direction of a beam are used as the sensitive indicator of crack existence. Then, weighting function is employed in the averaging process in frequency domain to account for the modal participation of the differences between the dynamic behavior of a beam with a fatigue crack at the low excitation and one at the high excitation. Subsequently, a damage index is defined such that the location and level of the crack may be identified. It is shown from the analysis of vibration measurements in this study that comparison of frequency response characteristics of a beam with a single fatigue crack at different level of excitation forces enables an effective detection of the crack.