• 제목/요약/키워드: Excitation energy transfer

검색결과 123건 처리시간 0.024초

Triplet Excitation Energy Transfer in Choleic Acid Crystals

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2409-2413
    • /
    • 2007
  • Time resolved phosphorescence of Dibromobenzophenone (DBBP) choleic acid crystal was observed at 4.2 K as functions of excitation energy and delay time. The experimental results reveal that the energy transfer efficiency is dependent on the excitation energy, i.e. the density of acceptors sites. As the excitation energy or delay time increases, the resonance phosphorescence does not broaden and shift gradually, rather a broad luminescence band develops about 290 cm?1 to lower energy of the resonance phosphorescence. The observation implies that energy transfer from high to low energy sites in this system is controlled by emission of phonons or vibrons. The data of time resolved experiments were analyzed in terms of a mechanism involving direct donor-acceptor excitation transport by exchange coupling. It was concluded that an isotropic twodimensional exchange interaction topology is consistent with energy transfer in this system.

Excitation Energy Transfer Rate Constants in meso-meso Linked Zn(II) Porphyrin Arrays with Energy Accepting 5,15-Bisphenylethynylated Zn(II) Porphyrin

  • Ko, Da-Mee;Kim, Hee-Young;Park, Jin-Hee;Kim, Dong-Ho;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1505-1511
    • /
    • 2005
  • The excitation energy transfer process occurring in energy donor-acceptor linked porphyrin array system is theoretically simulated using the on-the-fly filtered propagator path integral method. The compound consists of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin, in which the donor array and the acceptor are linked via a 1,4-phenylene spacer. Real-time path integral simulations provide time-evolution of the site population and the excitation energy transfer rate constants are determined. Simulations and experiments show an excellent agreement indicating that the path integration is a useful tool to investigate the energy transfer dynamics in molecular assemblies.

Excitation energy transfer from carotenoids probed by femtosecond time-resolved fluorescence spectroscopy

  • Akimoto, Seiji;Yamazaki, Iwao;Mimuro, Mamoru
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.78-81
    • /
    • 2002
  • Fluorescence rise and decay curves of carotenoids were measured in solutions and in pigment protein complexes with a femtosecond time-resolved fluorescence spectroscopy. For linear carotenoids, the S$_2$ lifetimes showed the maximum value around n = 9-10. The conjugation of a keto-carbonyl group shortened the S$_2$lifetime and prolonged the S$_1$lifetime. The excitation relaxation dynamics within carotenoids and the excitation energy transfer kinetics from carotenoids to chlorophylls are discussed as a function of molecular structure of carotenoids.

  • PDF

Rapid Energy Transfer Mechanism of F Electronic Excitation to the Vibration of Randomly Distributed $OH^- in KCI

  • 장두전;아철승
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1063-1068
    • /
    • 1998
  • The nature of F electronic excitation energy transfer to OH- vibrational levels in KCl crystals is the exchange interaction, although the transfer process exhibits three temporally distinguishable components depending on the distance between excited F center and OH-. The critical distance as well as rate of the major energy transfer process in randomly distributed samples increases rapidly as OH- librational motions become active with temperature rise. The excited state character introduced into the OH- ground electronic state by perturbation is essential for the exchange interaction. The perturbation is brought about by the expanded electron cloud of excited F center for OH- associated to F center, whereas by librations and lattice vibrations perpendicular to the bond axis for isolated OH- . F excitation quenching efficiency by OH- is dependent on the variation of the critical distance rather than the rate as the rate is much faster than the normal F bleach recovery rate.

F-Center Excitation Energy Transfer to CN$^-$ vibrational Levels in CsCl

  • Jang, Du-Jeon
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1990년도 광학 및 양자전자학 워크샵
    • /
    • pp.94-100
    • /
    • 1990
  • The rapid quenching dynamics of the F-center excitation by CN- defects in CsCl crystals were investigated by monitoring the ground state bleach recovery kinetics of F-centers, using a picosecond streak camera absorption spectrometer. The F-centers in CN- doped quenched samples show two bleach recovery components. Optical aggregation converts the slow component to the fast component. The slow one is due to the normal relaxation of the F*-centers as found in CN_ free crystals. The fast one is due to the energy transfer of the F-center electronic excitation to the vibrational energy levels of CN_ molecualr defects. The energy transfer occurs only in the F-center-CN_ defect pairs, FH(CN_)-centers.

  • PDF

Transfer of Electronic Excitation Energy in Poltstyrene Films Doped with an Intramolecular Proton Transfer Compound

  • 강태종;김학진;정진갑
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권7호
    • /
    • pp.616-621
    • /
    • 1996
  • The transfer of excitation energy from solvent to solute in polystyrene films doped with 2-(2'-hydroxyphenyl)benzothiazole (HBT) which undergoes intramolecular proton transfer in excited electronic state has been studied by employing steady state and time-resolved fluorescence measurements. The degree of Forster overlap between donor and acceptor molecule in this system is estimated to be moderate. Energy transfer efficiency increases with solute concentration at low concentration range and levels off at high concentration. It is observed that the excimer form of polystyrene is largely involved in energy transfer process. Photostability of HBT in polystyrene to UV light is also investigated to get insight into the long wavelength absorption band of HBT which was observed upon electron radiation.

Nd이 이온주입된 undoped와 Mg-doped GaN의 분광 특성 연구 (Optical Characterization on Undoped and Mg-doped GaN Implanted with Nd)

  • 송종호;이석주
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.624-629
    • /
    • 2006
  • Nd을 이온주입한 GaN를 이용하여 GaN와 Nd 이온 사이의 에너지 전달과정을 분석하고 Mg을 도핑 하였을 때의 효과를 보았다. Nd의 $^4F_{3/2}{\rightarrow}^4I_{9/2}$ 전이에 대하여 Photoluminescence (PL)와 PL excitation 방법을 이용하여 에너지 전달 경로에 적어도 3가지 이상의 밴드갭 내의 trap이 있음을 확인하였다. Mg이 doping된 GaN : Nd에서는 isoelectronic trap으로 생각되는 특정한 trap의 수가 증가되었음이 관측되었고 이로 인해 전기적으로 여기될 시료의 특성을 보여줄 밴드갭보다 큰 에너지를 이용한 여기 상태의 효율이 더욱 높아짐을 알 수 있었다.

파워트레인에 의한 차량 실내 소음 특성 및 전달 함수 측정 (The Analysis of Vehicle Interior Noise by the Powertrain, and Measurement of Noise Trasnsfer Function using Vibro-Acoustic Reciprocity)

  • 김성종;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.501-506
    • /
    • 2007
  • Structure-borne noise is the interior noise that results from the low frequency vibrational energy transmitted through those body and joint parts. The relation between the excitation of powertrain and resultant interior sound must be analyzed in order to identify and predict the structure borne noise. The method of acoustic source excitation is preferred than the method of mechanical force excitation to measure the NTF(noise transfer function). Because acoustical method is more convenient and reliable. In this paper, to analysis and identify vehicle interior noise by powertrain is performed, and the vibro-acoustic transfer function is extracted from experimental measurement. These are important step of TPA(transfer path analysis) to identify effect of interior noise resulted from powertrain running excitation.

  • PDF

Excitation Mechanism of Fluorescent Polycyclic Aromatic Amines and Polycyclic Aromatic Hydrocarbons in Peroxyoxalate Chemiluminescence Reactions

  • Sung Chul Kang;Kang-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권3호
    • /
    • pp.224-227
    • /
    • 1990
  • The excitation mechanism of polycyclic aromatic amines (amino-PAHs) and polycyclic aromatic hydrocarbons(PAHs) for the chemiluminescence arising from the reaction between oxalate ester, bis(2,4,6-trichlorophenyl)oxalate (TCPO) or bis(2,4-dinitrophenyl)oxalate (DNPO) and hydrogen peroxide has been studied in terms of the excitation efficiencies to singlet excitation energies and the oxidative half-wave potentials. As a results of the study, the excitations of both amino-PAHs and PAHs appear to involve the charge transfer type of energy transfer. However the chemiluminescence efficiency corrected for fluorescence quantum yield of the amino-PAHs are varied more sensitively to the oxidative half-wave potential than that of PAHs possibly due to the large difference in solvation energy between the compounds and their ions.

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.644-648
    • /
    • 2007
  • Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.