• Title/Summary/Keyword: Excitation Winding

Search Result 78, Processing Time 0.024 seconds

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

Development and Analysis of a Two-Phase Excitation Switched Reluctance Motor with Novel Winding Distribution Used in Electric Vehicles

  • Zhu, Yueying;Yang, Chuantian;Yue, Yuan;Zhao, Chengwen;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2364-2375
    • /
    • 2018
  • Two-phase simultaneous excitation mode of the switched reluctance motor (SRM) has been shown to effectively improve the average torque output compared with traditional single-phase excitation mode. But the torque ripple of the two-phase excitation SRM with traditional winding distribution increases because of the inconsistent electromagnetic field. To reduce the torque ripple, a two-phase excitation 8/6 SRM with novel winding distribution is proposed in this paper. The static torques generated by various magnetic circuits are analyzed and obtained to verify the torque increase. Then the electromagnetic characteristics of the proposed SRM are investigated by the numerical calculation method in detail, including flux linkage, inductance, and torque. Finally, an experiment for measuring the SRM static electromagnetic characteristics and dynamic performance is designed and performed based on the novel mode, and the comparing results show that the proposed two-phase SRM is effective.

Study on the Capacitor-self-excited Three-phase Synchronous Generator (A 캐패시터 자력식 삼상동기발전기에 관한 연구)

  • 정연택;김영동
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.425-432
    • /
    • 1984
  • This paper is to propse a new self-excitation method of synchronous generator. Instead of conventional exciter of synchronous generator, the additional winding which is arranged in addition to the armature winding, is used in this generator. The output terminal of the additional winding is connected to a capacitor and to a full wave rectifier in series. In this configuration, one source double excitation which is composed of capacitor-self-excitation by lead urrent and direct current excitation by rectifier, is induced. The result is that` The excetation efficency is improved greatly and output waveform is improved also. In three-phase synchronous generator using the new method of the one source double excitation, voltage element (shunt characteristics) and current element (series characteristics)are compounded in scalar by adapting star-point-open-rectifier system. The result is as following` The effect of load power factor angle on voltage regulation is reduced greatly, compound characteristics is become manifold by controlling capacity of capacitor, and transient response is improved.

  • PDF

An Analysis of Noise Characteristics According to the Excitation Method of SRM (SRM의 여자방식에 따른 소음특성 해석)

  • Mun, Jae-Won;O, Seok-Gyu;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.565-571
    • /
    • 2000
  • SRM has been applied to many commercial applications that require economical advantages and high performance abilities. But it has some drawbacks such as acoustic noise due to the abrupt change of mmf level when commutation. The abrupt change of a phase excitation produces mechanical stresses and it results in torque ripple and noise. This paper deals with an analysis of vibration and noise in SRM drive. Several types of excitation method are taken into account. The 1-phase and 2-phase excitation technique of short-pitch winding 2-phase excitation technique of full-pitch winding are tested. The acoustic noise is reduced remarkably through the sequential phase excitation in the 2-phase excitation. It is because that the scheme reduces abrupt change of excitation level by distributed balanced excitation with free-wheeling during commutation.

  • PDF

Characteristics Analysis of multi-separated winding LDM by Excitation Mode (여자 방식에 따른 다권선 LDM의 특성 해석)

  • Kim, J.P.;Baek, S.H.;Maeng, I.J.;Woo, Y.S.;Kim, I.N.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.804-806
    • /
    • 2001
  • In this paper, by designing ratio width of the permanent magnet versus the stator coil, double excitation LDM with multi-separated winding which is possible to obtain the constant thrust force is proposed. Using Empulse, this paper has explained a various excitation mode to analyze the thrust force of multi-separated winding LDM. The simulation results show single-phase excitation mode have low thrust force ripple.

  • PDF

Hunting Protection of Synchronous Motor by Field Control (계자제어에 의한 동기전동기의 난조방지)

  • Song Yop Hahn
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.19-26
    • /
    • 1971
  • To proteting hunting of synchronus motor a new one which has two field windings is designed. One is main field winding excited constantly and the other is control field winding excited only during the load of motor changes. The oscillation of the motor is controlled by increasing or decreasing the control field excitation. To determine the optimal field excitation the Pontryagin's minimum principle is applied. Also this paper gives the optimal trajectories of the motor and it's transition time. This motor has some of better properties than the old motor with damper winding. These phroperties are (1) there is no hunting (2) the transient stability is improved (3) transition time is very short.

  • PDF

2-Stage Commutated SRM with Auxiliary Winding for Reduction of Acoustic Noise

  • Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.22-27
    • /
    • 2008
  • A new excitation strategy for a Switched Reluctance Motor with Auxiliary Winding(SRMAW) is described and tested. The proposed scheme has auxiliary winding with one diode which is wound over all poles in one winding. In this scheme, auxiliary winding is used to reduce magnetic stress during commutations. The abrupt change of a phase excitation produces mechanical stresses resulting in vibration and noise. The acoustic noise is reduced remarkably through the 2-stage commutation. The operational principle and a characteristic comparison of the conventional SRM show that this scheme has some advantages including noise reduction as well as high drive efficiency.

Stator Winding for Characteristic Analysis of Double Sided Excitation LDM (양측여자형 LDM의 특성해석을 위한 고정자 권선법)

  • Woo, Y.S.;Baek, S.H.;Maeng, I.J.;Hong, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.132-134
    • /
    • 2001
  • In this paper, by designning the width of the stator coil, double sided excitation LDM with multi-separated winding which is possible to obtain the constant thrust force is proposed. Using Maxwell 2D, Empulse, we were proved the characteristic analysis of LDM accoding to ratio magnet width venus coil width of LDM. Though designning for double sided excitation LDM with multi-separated winding, we could be achieved the constant thrust and rapidly time responses within the operating region.

  • PDF

The Characteristic Analysis of Reluctance Motor by Excitation Mode (여자방식에 따른 리럭턴스 전동기의 특성해석)

  • Kim, Jong-Gyeum;Kim, Il-Jung;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.122-128
    • /
    • 2000
  • The SRM is a simple and robust machine which is finding applications over a wide power and speed range. To properly evaluate the motor performance, a reliable model design is required. This paper explains the various excitation mode and winding configuration to analyze the torque performance of SRM. A number of different idealized current excitation patterns are introduced, using unipolar, bipolar & square excitation, and the output torques produced by the various winding configurations are compared. The electromagnetic torque of the SRM was calculated from the rate of change of co-energy with respect to angular displacement. The simulation result shows that 3-phase square excitation mode models have revealed higher torque performance.

  • PDF

Performance analysis of a 746 W HTS generator equipped with 70 A class contactless superconducting field exciter

  • Chae, Yoon Seok;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • This paper presents the analysis results on the electrical output performance characteristics of a 746 W high temperature superconducting generator (HTSG). The HTS field winding is charged by non-contact excitation method, i.e., contactless superconducting field exciter (CSFE) which is originated by rotary flux pump based on permanent magnet. In this paper, the preliminary current charging test was carried out using a 70 A CSFE to evaluate the performance of field exciter and analyze its non-contact excitation characteristics for the full-scale HTS field winding of the 746 W HTSG. First, the various contactless current-charging tests were conducted using assembly with HTS field winding and CSFE. Then, in order to estimate the output power performance characteristics of the 746 W HTSG, finite element analysis was conducted based on field excitation information which is experimentally measured under various operating conditions. Finally, the electrical output characteristics in no-load and load models were simulated by two-dimensional transient solver in ANSYS electromagnetics 19.0 release.