• 제목/요약/키워드: Excitation Frequency

검색결과 1,242건 처리시간 0.024초

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

정사각봉의 진동에 의한 유동해석 (NUMERICAL FLOW VISUALIZATION ANALYSIS AROUND AN OSCILLATING SQUARE CYLINDER)

  • 주명근;;손창현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.115-119
    • /
    • 2007
  • In this paper, a flow visualization analysis has been carried out on an oscillating square section cylinder, numerically, using a commercially available code CFD-ACE. In this study, the square cylinder is forced to oscillate at different frequencies of excitation, viz., fe/fo=0.5, 1.0 and 2.0 (where, fe is the excitation frequency provided to the cylinder and fo is the natural vortex shedding frequency from the stationary cylinder at a particular Reynolds number (=5200). In all the cases, the peak-to-peak amplitude of oscillation is kept at 32% of the side dimension of the square cylinder. These studies are conducted to understand the influence of frequency of oscillation on the flow field features around the cylinder, particularly the mode of vortex shedding. Results indicate that, the flow field around a square cylinder is very much influenced by the excitation frequency, in particular the vortex shedding mode. It is also found that, the vortex street parameters are significantly influence by the oscillation frequency. Comparison with earlier reported experimental studies has also been attempted in this paper. In appears that, such a numerical exercise (as performed in this paper) is first of its kind. It is believed that, these studies would enable one to understand the mechanisms underlying the flow-induced vibrations of a square section cylinder.

  • PDF

기관실 단순 철의장품 모델 고유 진동수 해석 (Analysis of Natural Frequency of Simple Steel Outfitting Structure in Engine Room)

  • 정치석;김대성;조성암;장성일
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.106-111
    • /
    • 2006
  • The steel outfitting structures installed in engine room are vibrated by an excitation of the engine and the propeller. Vibration problems such as cracks and fitting breakages are mainly induced at the near range of the resonance. The excitation frequency estimation is possible by engines and propeller specifications, but the natural frequency of a steel outfitting structure is not easily estimated due to the complication and variety of the designed shape. This paper represents natural frequency data of simple steel outfitting structures. As a vibration analysis tool, MSC/NASTRAN was used to calculate natural frequencies. Natural frequencies were compared in case of the shape and boundary condition changes of simple models, and anti-vibration models of the steel outfitting structures were presented on the basis of results.

  • PDF

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C.;Nagarajaiah, S.;Dick, A.J.
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.319-341
    • /
    • 2014
  • A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

진동응답 측정에 의한 이중 벌류트형 양흡입 원심펌프의 동적특성 (Dynamic Characteristics of the Double Volute Double Suction Centrifugal Pump Using Measured Vibration Data)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.500-507
    • /
    • 2000
  • Dynamic forces due to mechanical and hydraulic related causes are always exerted on operating turbomachinery such as centrifugal pumps. To ensure the safety and the reliability of the pump. the magnitudes of the vibration must be kept within an acceptable limit. The focus of this paper is on the identification of the vibration behavior and the quantitative analysis of the hydraulic excitation forces. As the structure becomes more complex finite element analysis is essential to accurately predict the vibration characteristics and the excitation forces, This paper presents an experimental and analytical technique to find and solve to vibration problems in double volute double suction centrifugal pump. Measured vibration data due to the dynamic forces are presented and individual causes are identified, finally excitation forces of the pump are inversely estimated at each frequency on operating conditions.

  • PDF

Effects of a One-Way Clutch on the Nonlinear Dynamic Behavior of Spur Gear Pairs under Periodic Excitation

  • Cheon Gill-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.941-949
    • /
    • 2006
  • Nonlinear behavior analysis was used to verify whether a one-way clutch is effective for reducing the torsional vibration of a paired spur gear system under periodic excitation. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch. The one-way clutch also eliminated unsteady continuous jump phenomena over multiple solution bands, and prevented double-side contact, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of external periodic excitation and various parameter changes than a conventional gear system without a one-way clutch.

차량 추진축과 엑슬 진동의 상관성에 관한 연구 (A Study on the Correlation of Vehicle Propeller Shaft and Axle Vibration)

  • 장일도;한기석;홍동표
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.596-601
    • /
    • 2000
  • Propeller shaft is one of the main excitation source in the vehicle driveline. This paper presents the correlation of the propeller shaft and axle vibration. 10 D.O.F. lumped mass model is constructed to simulate the dirveline. Experimental apparatus is constructed to verify the simulation model and to measure the vibration signal of lthe driveline. The results of simulation and experiments show that propeller shaft excitation is 2nd harmonic of the rotational frequency. Axle housing vibration signal shows that axle resonate with 2nd harmonic of excitation frequency due to universal joint effect.

  • PDF

동기발전기 여자시스템용 고주파 PWM 컨버터 설계 (Design of a High Frequency PWM Converter for Synchronous Generator Excitation System)

  • 장수진;류동균;원충연;이진국;배기훈;김수석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.515-518
    • /
    • 2002
  • A synchronous generator is equipped with an automatic voltage regulator(AVR), which is responsible for keeping the output voltage constant under normal operating conditions at various levels. The output voltage of Synchronous Generator is regulated constantly by field voltage control in excitation system. High frequency PWM converter (Buck converter) type excitation system for synchronous generator that can sustain prefer output voltage level even at the fault condition happened. The proper operation of the proposed excitation system was verified through the simulations and the experiments.

  • PDF

직접구동형 가진기의 개발 및 성능평가 (Development of a Direct Drive Type Exciter and Performance Evaluation)

  • 김오복;박정모;김석현
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.329-334
    • /
    • 1998
  • The purpose of this study is to design and manufacture a vibration exciter, which can be used in the education and research for the vibration engineering. For this purpose, a direct drive type vibration exciter is developed, which consists of a motor, an inverter, eccentric rotating sleeves and two excitation plates. Developed exciter is tested on some dynamic characteristics to evaluate its excitation performance. Test results show that the developed machine can excite bodies on the horisontal vibrating plates in x,y direction by the constant displacement amplitude in the frequency range below 50Hz, which confirm that the exciter can be used as a vibration testing machine in the low frequency range.

  • PDF