• Title/Summary/Keyword: Exchange option

Search Result 72, Processing Time 0.025 seconds

Performance Analysis of Timer Assignment and Utilization of the IEEE 802.4 Token Bus for Real Time Processing (실시간 처리를 위한 IEEE 802.4 토큰버스 네트워크의 타이어 할당과 유용도 처리 성능 해석)

  • Kim, Jeong-Ho;Lee, Min-Nam;Lee, Sang-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.3
    • /
    • pp.357-366
    • /
    • 1994
  • The IEEE 802.4 token bus has been widely accepted as the standard for factory local area networks. The priority option of the 802.4 standard supports multiple classes of traffic by using a set of timers to control information exchange. The performance of the 802.4 priority mechanism in industrial real time control is examined. A timer assignment technique is presented for such applications. The timers are set to satisfy the worst case access delay requirements of real time control applications. Other applications that are not time constrainted can be supported simultaneously. In fact under certain conditions, such applications can also be guaranteed a minimum bandwidth allocation. Simulation results are used to evaluate the timer assignment and utililization.

  • PDF

Capital Structure and Default Risk: Evidence from Korean Stock Market

  • GUL, Sehrish;CHO, Hyun-Rae
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.15-24
    • /
    • 2019
  • This study analyzes the effect of the capital structure of Korean manufacturing firms on default risk based on Moody's KMV option pricing model where the probability of default is obtained by measuring the distance to default as a covariant in logit model developed by Merton (1974). Based on the panel data of manufacturing firms, this study achieves its primary objective, using a fixed effect regression model and examines the effect of a firm's capital structure on default risk amongst publicly listed firms on Korea exchange during 2005-2016. Empirical results obtained suggest that the rise in short-term debt to assets leads to increase the risk of default whereas the increase in long-term debt to assets leads to decrease the default risk. The benefits of short-term debt financing over a short-term period fade out in the presence of information asymmetry. However, long-term debt financing overcomes the information asymmetry and enjoys the paybacks of tax advantage associated with long-term debt. Additionally, size, tangibility and interest coverage ratio are also the important determinants of default risk. Findings support the trade-off theory of capital structure and recommend the optimal use of long-term debt in a firm's capital structure.

Encountering the Silk Road in Mengjiang with Tada Fumio: Korean/Japanese Colonial Fieldwork, Research, Connections and Collaborations

  • WINSTANLEY-CHESTERS, Robert;CATHCART, Adam
    • Acta Via Serica
    • /
    • v.7 no.1
    • /
    • pp.131-148
    • /
    • 2022
  • While much has been written about Imperial Japan's encounter with geopolitics and developing ideas about Geography as a political and cultural discipline, little if anything has been written about relational and research Geographies between Japan and Silk Roads both ancient and modern. Memories of the ancient Silk Road were revivified in the late 19th century in tandem with the Great Game of European nations, as Japan modernized and sought new places and influence globally following the Meiji restoration. Imperial Japan thus sought to conquer and co-opt spaces imagined to be part of or influenced by the ancient Silk Road and any modern manifestation of it. This paper explores a particular process in that co-option and appropriation, research collaboration between institutions of the Empire. In particular it considers the exploration of Mengjiang/Inner Mongolia after its conquest in 1939/1940, by a collaborative team of Korean and Japanese Geographers, led by Professor Tada Fumio. This paper considers the making knowable of spaces imagined to be on the ancient Silk Road in the Imperial period, and the projecting of the imperatives of the Empire back into Silk Road history, at the same time as such territory was being made anew. This paper also casts new light on the relational and collaborative processes of academic exchange, specifically in the field of Geography, between Korean and Japanese academics during the Korean colonial period.

Investigating adsorption ion characteristics on cobalt oxides catalyst in electrolysis of waste alkaline solutions using ab-initio study (제일원리 전산모사법을 이용한 폐양액 수전해용 코발트 산화물 촉매의 흡착 이온 특성 연구)

  • Juwan Woo;Jong Min Lee;MinHo Seo
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.427-436
    • /
    • 2023
  • In the industry, it is recognized that human activities significantly lead to a large amount of wastewater, mainly due to the increased use of water and energy. As a result, the growing field of wastewater resource technology is getting more attention. The common technology for hydrogen production, water electrolysis, requires purified water, leading to the need for desalination and reprocessing. However, producing hydrogen directly from wastewater could be a more cost-effective option compared to traditional methods. To achieve this, a series of first-principle computational simulations were conducted to assess how waste nutrient ions affect standard electrolysis catalysts. This study focused on understanding the adsorption mechanisms of byproducts related to the oxygen evolution reaction (OER) in anion exchange membrane (AEM) electrolysis, using Co3O4 as a typical non-precious metal catalyst. At the same time, efforts were made to develop a comprehensive free energy prediction model for more accurate predictions of OER results.

Simulation of Circulation and Water Qualities on a Partly Opened Estuarine Lake Through Sluice Gate (배수갑문을 통해 부분 개방된 하구호에서의 순환과 수질모의)

  • 서승원;김정훈;유시흥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-150
    • /
    • 2002
  • To improve the water quality of the recently constructed Siwhaho, sluice gates were operated to allow free exchange of water with the sea. This estuarine lake connected to the outer sea through narrow gates is affected mainly by flushing by gate operation and river flows and wind forcing sometimes. As a predicting tool far the water qualities, a three-dimensional finite volume model CE-QUAL-ICM is incorporated into a finite element hydrodynamic model, TIDE3D. In coupling these two different modules, a new error minimization technique is applied by considering conservation of mass. Model tests for one year after calibration and validation using field observation show that eutrophication and other biological changes reach quasi-steady state after initial 60 days of simulation, thus it would be necessary to consider moderate ramp up option to remove initial uncertainties due to cold start option. Sediment-water interaction might not be a concern in the long-term simulation, since its effect is negligible. Simulated results show the newly applied scheme can be applied with satisfaction not only fur lessening of eutrophic processes in an estuarine lake but also looking for some active circulation to improve water quality.

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

VOC Emission Characteristics of Dry Cleaned Wool Scarfs through Small Chamber Test (소형챔버를 이용한 드라이클리닝 모직물 목도리의 휘발성유기화합물 방출 특성)

  • Shin, Jin-ho;Kwon, Seung-mi;Kim, Hyun-soo;Roh, Bang-Sik;Kim, Kwang-rae;Eo, Soo-mi;Jung, Kweon;Lee, Young-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • Objectives: This study was conducted to evaluate the emission of VOCs from clothing that had been dry cleaned. Methods: In order to ensure the same conditions, f100% wool scarves were selected as the fabric type. Four identical tests were conducted on the option of either removing the plastic bags which came from the dry cleaning shop or not. The scarf was located inside a closet or room for one or two days. Small chamber tests were conducted to determine the VOC emission characteristics under the same conditions such as temperature, humidity, loading factor, and air exchange rates. Air from the chamber for VOCs was sampled by Tenax TA tube and analyzed by thermal desorption and GC/MSD. Results: Assuming that test represented dry cleaning and consumer's conditions well enough, we can conclude that immediate emissions after the dry cleaning of the scarfs caused elevated levels of TVOC, five VOCs (benzene, toluene, ethylbenzene, xylene, stylene), and decane group compounds. Conclusions: By removing the plastic bags which came from the dry cleaning shop or not, the storage conditions of dry cleaned scarfs by consumers during the storage time periods (one to three days) would be significant for reducing VOC emissions.