• 제목/요약/키워드: Exchange flow

검색결과 829건 처리시간 0.024초

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (III) -The Time-Varying States of the Flow Pattern and Water Exchange in Barotropic Rotating Model-

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.260-268
    • /
    • 1998
  • A flow pattern and water exchange in Sagami Bay is examined using a barotropic hydraulic model. In the model experiments, the volume transports of the Kuroshio Through Flow were changed with time. The results of the model experiments show that when the volume transport is increased with time, water mass and vorticity are transferred to the inner part of the bay by wakes from the western part of the bay. In the case of decrease, as the wakes are ceased, the inner cyclonic circulation water is discharged to the outside of the bay by its southward extension through the Oshima eastern channel. It is found that the water exchange by the short-term variation of volume transport in time is about 20% of all the bay water.

  • PDF

MEASUREMENT OF THE SINGLE AND TWO PHASE FLOW USING A NEWLY DEVELOPED AVERAGE BIDIRECTIONAL FLOW TUBE

  • Yun, Byong-Jo;Euh, Dong-Jin;Kang, Kyunc-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.595-604
    • /
    • 2005
  • A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the Pilot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal drift-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio & Malnes' momentum exchange model could predict the phasic mass flow rates within a $15\%$ error. A new momentum exchange model was also proposed from the present data and its implementation provides a $5\%$ improvement to the measured mass flow rate when compared to that with the Bosio & Malnes' model.

Development of Pore-filled Ion-exchange Membranes for Efficient All Vanadium Redox Flow Batteries

  • Kang, Moon-Sung
    • 전기화학회지
    • /
    • 제16권4호
    • /
    • pp.204-210
    • /
    • 2013
  • Thin pore-filled cation and anion-exchange membranes (PFCEM and PFAEMs, $t_m=25-30{\mu}m$) were prepared using a porous polymeric substrate for efficient all-vanadium redox flow battery (VRB). The electrochemical and charge-discharge performances of the membranes have been systematically investigated and compared with those of commercially available ion-exchange membranes. The pore-filled membranes were shown to have higher permselectivity as well as lower electrical resistances than those of the commercial membranes. In addition, the VRBs employing the pore-filled membranes exhibited the respectable charge-discharge performances, showing the energy efficiencies (EE) of 82.4% and 84.9% for the PFCEM and PFAEM, respectively (cf. EE = 87.2% for Nafion 1135). The results demonstrated that the pore-filled ion-exchange membranes could be successfully used in VRBs as an efficient separator by replacing expensive Nafion membrane.

플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)- (Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System-)

  • 김용현;고학균;김문기
    • Journal of Biosystems Engineering
    • /
    • 제15권1호
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF

바나듐 레독스-흐름 전지용 격막에 관한 연구 (Study on a Separator for the All-vanadium Redox Flow Battery)

  • 이상호;김정근;최상일;황갑진;진창수
    • 멤브레인
    • /
    • 제19권2호
    • /
    • pp.129-135
    • /
    • 2009
  • 바나듐 레독스-흐름 전지용 격막으로 사용하기 위해 폴리설폰(Psf)에 폴리페닐렌설파이드설폰(PPSS)을 블록 공중합 시킨 폴리머를 사용하여 양이온교환막을 제작하여, 막 특성을 평가하였다. 제작한 양이온교환막은 Nafion117보다 열적 안정성이 뛰어나다는 것을 TG분석을 통해 알 수 있었고, 1몰 황산용액에서의 막 저항은 3 cc의 CSA를 도입하였을 때 $0.96{\Omeg}{\cdot}cm^2$로 제일 작은 저항 값을 나타냈다. 제작한 양이온교환막의 바나듐 레독스-흐름 전지에서의 전기화학적 특성에 대해 평가하였다. 제작한 양이온교환막을 사용한 바나듐 레독스-흐름 전지의 100% 충전상태에서의 기전력은 바나듐 레독스-흐름 전지의 기전력 값인 1.4V를 나타냈으며, 각 충전상태에서의 충 방전 셀 저항은 Nafion117을 사용한 전지의 값보다 작은 값을 나타냈다.

환율 변동성과 양자 무역 흐름: 중국을 중심으로 (Exchange Rate Volatility and Bilateral Trade Flow: Evidence from China)

  • 이청;이상휘
    • 무역학회지
    • /
    • 제48권4호
    • /
    • pp.47-66
    • /
    • 2023
  • 본 연구는 중국의 대외무역정책 조치가 중국에 미치는 영향을 살펴보고자 하며 중국의 양자 무역이 실질실효환율의 움직임에 크게 영향을 받는다는 것으로 나타났다. 또한, 총무역흐름과 환율변동의 관계를 분석한 결과 실질환율의 하락이 중국의 수출량을 증가시키고 수입량을 소폭 감소시키는 것으로 나타났다. 또한 중국의 수출량은 환율수준에 비해 환율변동성에 대한 민감도가 높은 것으로 나타났으며, 나아가 세분화된 무역흐름에 대한 실증결과는 상품마다 환율변동에 따라 상이한 영향을 받고 있음을 시사하고 있다. 자본재와 소비재는 서로 다른 가공 단계에 있으므로 환율 하락으로 인해 수출입에 부정적인 영향을 미치지 않은 것으로 나타났다.

Psf (polysulfone) 함유 양이온교환막의 바나듐 레독스-흐름 전지에서의 내구성 (Durability of Cation Exchange Membrane Containing Psf (polysulfone) in the All-vanadium Redox Flow Battery)

  • 김정근;김재철;유철휘;황갑진
    • 멤브레인
    • /
    • 제21권2호
    • /
    • pp.141-147
    • /
    • 2011
  • 바나듐 레독스-흐름 전지 (V-RFB)용 격막으로 사용하기 위해 폴리설폰(psf)에 폴리페닐렌설파이드설폰(PPSS)을 블록 공중합 시킨 폴리머와 여기에 TPA (tungstophosphoric acid)를 첨가하여 양이온교환막을 제작하였다. 제작한 막은 1M $H_2SO_4$용액을 사용하여 막 저항을 평가하였다. 제작한 Psf-PPSS와 Psf-TPA-PPSS 양이온교환막의 막 저항은 약 $0.94{\Omega}{\cdot}cm^2$를 나타냈다. 제작한 양이온교환막과 Nafion117을 격막으로 사용하여 V-RFB의 전기화학적 특성을 평가하였다. 4 A의 전류에서 측정한 V-RFB의 충 방전 셀 저항은 막의 종류에 따라 Nafion117 < Psf-TPA-PPSS < Psf-PPSS 의 순서로 값이 낮았다. 막을 5가 바나듐 수용액에 침적하여 침적시간 변화에 따른 V-RFB의 총 방전 셀 저항을 측정함으로써 내구성을 평가하였다. 내구성은 제작한 Psf-PPSS 막이 가장 우수하였으며, Nafion117막과 제작한 Psf-TPA-PPSS막이 서로 동등하였다.

大邱市의 工業用水와 鐵의 軟化障害에 關하여 (Industrial Waters of Taegu City and on the Objection of Iron for Water Softening)

  • 이대수;홍순영
    • 대한화학회지
    • /
    • 제6권2호
    • /
    • pp.117-121
    • /
    • 1962
  • The waters throughout Taegu area for 87 points were analysed and according to the analytical data, following unfavorable characteristics for industrial uses were given: (1)Shows strong hardness, (2)Has high ratio of ignition residue to evaporation residue, (3) pH value is over 7, (4) Contains considerable quntities of iron.And then investigated the exchange rate and regeneration level of iron ion using cation exchange resin, Lewatit KS.When the hard water containing 2.2 ppm of iron with 18.4 ppm of calcium and 6.2 ppm of magnesium was passed through the ion exchange resin under $3cc/cm^2/min$ in exhaustant flow rate, exchange rate of iron reached to 42% after 300 hours flow. The exchange efficiency shows abrupt decreasing in initial stage of flow up to 100 hours flow. The exchanger which contains iron was regenerated with 10% sodium hydroxide aqua solution under SV (space velocity) 4. By this method, 57% of iron was eliminated from exchanger while calcium and magnesium are removed as much as 85% and 87% respectively.

  • PDF

Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell

  • Jian Yao;Fayi Ya;Xuejian Pei
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.38-50
    • /
    • 2023
  • Proton exchange membrane fuel cell (PEMFC) is a portable and clean power generation device. The structural arrangement of the flow field has a significant influence on the delivery efficiency of PEMFC. In this article, a new bionic flow channel is designed based on the inspiration of a spider shape. The branch channel width and branch corner are studied as the focus, and its simulation is carried out by the method of computational fluid dynamics (CFD). The results show that when channel width/rib width and corner of the branch are 1.5 and 130° , respectively, it is the best numerical combination and the cell comprehensive performance is excellent. The final model using this numerical combination is compared with the traditional flow channel model to verify the advancement of this scheme.