• Title/Summary/Keyword: Excess oxygen

Search Result 217, Processing Time 0.03 seconds

Effect of Oxygen Injection on Microstructure and Mechanical Properties of Ni-based Superalloy Recycled by AOD Process (AOD공정으로 재활용된 니켈합금의 산소주입량에 따른 조직과 기계적 성질 변화)

  • Lee, Duk-Hee;Woo, Kee-Do;Kang, Whang-Jin;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.10-16
    • /
    • 2016
  • In this study, the Ni base superalloy was recycled by Argon oxygen decarburization(AOD) process using an inconel 713C scrap. During AOD process, argon gas was continuously injected 1,000 sccm and oxygen gas was injected into 10, 20 and 30 minutes of 100, 250 and 500 sccm.. In early stage of oxygen injection, the oxygen dose increased with increasing Al, Cr, and Mo content and decreasing C content. And Al content was decreased by carburization with added elements in late stage Because of oxidation was occurred with Al, Cr etc. after the reaction of carbon has been finished. From the results, the ratio of ${\gamma}^{\prime}$ phase reduced due to decreasing of Al content for that reason Al is the main element to form the ${\gamma}^{\prime}$ phase. Also carbide reduced owing to decreasing of C content so the mechanical properties of the specimens excessively injected by excess $O_2$ gas were decreased.

Effect of Carrier Size on the Performance of a Three-Phase Circulating-Bed Biofilm Reactor for Removing Toluene in Gas Stream

  • Sang, Byoung-In;Yoo, Eui-Sun;Kim, Byung-J.;Rittmann, Bruce E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1121-1129
    • /
    • 2008
  • A series of steady-state and short-term experiments on a three-phase circulating-bed biofilm reactor (CBBR) for removing toluene from gas streams were conducted to investigate the effect of macroporous-carrier size (1-mm cubes versus 4-mm cubes, which have the same total surface area) on CBBR performance. Experimental conditions were identical, except for the carrier size. The CBBR with 1-mm carriers (the 1-mm CBBR) overcame the performance limitation observed with the CBBR with 4-mm carriers (the 4-mm CBBR): oxygen depletion inside the biofilm. The 1-mm CBBR consistently had the superior removal efficiencies of toluene and COD, higher than 93% for all, and the advantage was greatest for the highest toluene loading, $0.12\;M/m^2-day$. The 1-mm carriers achieved superior performance by minimizing the negative effects of oxygen depletion, because they had 4.7 to 6.8 times thinner biofilm depths. The 1-mm carriers continued to provide protection from excess biomass detachment and inhibition from toluene. Finally, the 1-mm CBBR achieved volumetric removal capacities up to 300 times greater than demonstrated by other biofilters treating toluene and related volatile hydrocarbons.

Cytoprotective Effects of Dihydrolipoic Acid and Lipoic Acid on the Oxidative Stress in Cultured Rat Cortical Neurons

  • Kim, Won-Ki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.427-433
    • /
    • 1998
  • In brain hypoxic-ischemia, an excess release of glutamate and a marked production of reactive oxygen species (ROS) occur in neuronal and non-neuronal cells. The present study investigated the effect of the biological antioxidants dihydrolipoic acid (DHLA) and lipoic acid (LA) on N-methyl-D-aspartate (NMDA)- and ROS-induced neurotoxicity in cultured rat cortical neurons. DHLA enhanced NMDA-evoked rises in intracellular calcium concentration ($[Ca^{2+}]_i$). In contrast, LA did not alter the NMDA-evoked calcium responses but decreased after a brief treatment of dithiothreitol (DTT), which possesses a strong reducing potential. Despite the modulation of NMDA receptor-mediated rises in $[Ca^{2+}]_i$, neither DHLA nor LA altered the NMDA receptor-mediated neurotoxicity, as assessed by measuring the amount of lactate dehydrogenase released from dead or injured cells. DHLA, but not LA, prevented the neurotoxicity induced by xanthine/xanthine oxidase-generated superoxide radicals. Both DHLA and LA decreased the glutathione depletion-induced neurotoxicity. The present data may indicate that biological antioxidants DHLA and LA protect neurons from ischemic injuries via scavenging oxygen free radicals rather than modulating the redox modulatory site(s) of NMDA receptor.

  • PDF

The Oxidation of Specpure Nickel (Specpure Nikel의 Oxidation)

  • Choi, Jae-Shi;Sin, Soo-Hee;Lee, Kyu-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.153-157
    • /
    • 1966
  • The measurement of Oxidation of nickel has been investigated using vacuum quartz microbalance in the temperature range of $500^{\circ}{\sim}800^{\circ}C$ at various oxygen pressure. The rate constants of nickel-oxidation were evaluated according to the parabolic rate law. From the Arrhenius equation, the activation energy in the range of experimental temperatures were found that $E_{act}$= 35.4 Kcal/mole. It was also found that the parabolic rate constants varied approximately as the one fifth power of the oxygen pressure for nickel-oxidation. The mechanism for the oxidation of this metal were seemed to be via cation vacancy produced by excess of oxygen dissolved in the oxide film.

  • PDF

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste (순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가)

  • Park, Seyong;Kim, Moonil;Park, Seonghyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.5-16
    • /
    • 2021
  • In this study, the applicability of the MBR(Membrane Bio Reactor) process of oxygen dissolve was evaluated through comparison and evaluation of the efficiency of oxygen dissolve device and conventional aeration device in the explosive tank within the MBR process. The organic matter and ammonia oxidation by oxygen dissolve device were evaluated, and the efficiency of persaturation was evaluated by applying real waste water (anaerobic digester effluent treatement from food waste). SCOD and ammonia removal rates for oxygen dissolve device and conventional aeration device methods were similar. However, it was determined that the excess sludge treatment cost could be reduced as the yield of microorganisms by oxygen dissolve device is about 0.03 g MLSS-produced/g SCOD-removed lower than that of microorganisms by conventional aeration device. The removal rates of high concentrations of organic matter (4,000 mg/L) and ammonia (1,400 mg/L) in anaerobic digester effluent treatment from food waste were compared to the conventional aeration device and the oxygen dissolve device organic matter removal rate was approximately 13% higher than that of the conventional aeration device. In addition, for MLSS, the conventional aeration device was 0.3 times higher than for oxygen dissolve device. This is believed to be due to the high progress of sludge autooxidation because the dissolved oxygen is sufficiently maintained and supplied in the explosive tank for oxygen dissolve device. Therefore, it was determined that the use of oxygen dissolve device will be more economical than conventional aeration device as a way to treat wastewater containing high concentrations of organic matter.

Effects of the Co-treatment of Municipal Wastewater with Microwave-Irradiated Excess Sludge on the Performance of the Activated Sludge Process (초단파조사 처리된 잉여슬러지와 하수의 병합처리가 활성슬러지공법의 성능에 미치는 영향)

  • Kim, Nam-Chul;Jang, Myung-Bae;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.304-310
    • /
    • 2007
  • The purpose of this research was to investigate the effects of the co-treatment of municipal wastewater with microwave-irradiated excess sludge on the treatment efficiency and excess sludge production of the activated sludge process. When 250 mL of excess sludge with a MLSS concentration of approximately 2,000 mg/L was microwave-irradiated at $20^{\circ}C$ for $40\sim300$ sec by a microwave oven (2,450 MHz, 700 W), the temperature of the sludge increased at a rate of approximately $20^{\circ}C/min$ and the SCOD, TKN and T-P concentrations of the sludge showed the highest increase in the irradiation time of $40\sim130$ sec. And, the oxygen uptake rate measurement of the sludge microorganism suggested most of the microorganisms in the sludge were destroyed at an irradiation time above 130 sec(above $65^{\circ}C$). When the municipal wastewater and microwave-irradiated excess sludge was co-treated by the activated sludge process, almost no effect was observed in the pH and alkalinity of both the influent and effluent, but the influent concentrations of SS, COD, T-N and T-P increased. Even though the effluent SS, BOD and T-P concentrations showed almost no effect, the COD and TKN concentrations increased. The microbial yield coefficient decreased at a rate of 0.91 g SS/g COD removed as the irradiation ratio increased at a rate of 1 g SS/g SS-day.

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

Nonstoichiometry of the Yttrium Oxide and the Holmium Oxide (산화이트륨 및 산화홀뮴의 비화학양론)

  • Chang, Soon-Ho;Yo, Chul-Hyun;Choi, Jae-Shi;Pyun, Mu-Sil
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.231-237
    • /
    • 1984
  • The x-values in the nonstoichiometric chemical formulas $YO_{1.5+x}\;and\;HoO_{1.5+x}$, have been measured in the temperature range from 700$^{\circ}$C to 1000$^{\circ}$C under oxygen pressures from $2{\times}l0^{-1}\;to\;1{\times}10^{-6}$ atm by gravimetric method. The observed x-values increase with increasing temperature and oxygen pressure. The enthalpies of formation of excess oxygen in yttrium oxide and holmium oxide decrease with decreasing oxygen pressure and are all positive values representing an endothermic process. The 1/n values calculated from the slopes of the plots of log x vs. log $P_{O2}$ increase with temperature and are positive values which means the higher oxygen pressure dependence at higher temperature. We have examined the nonstoichiometric defect and conduction mechanism from x-values and thermodynamic data.

  • PDF

Thermal Stability of $\textrm{RuO}_2$ Thin Film Annealed at High Temperature in Oxygen Atmosphere ($\textrm{RuO}_2$ 박막의 산소 분위기 열처리시 열적 안정성에 관한 연구)

  • O, Sang-Ho;Park, Chan-Gyeong;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1090-1098
    • /
    • 1998
  • $RuO_2$ thin films were deposited on Si and Ru/Si substrates by rf magnetron reactive sputtering and annealed in oxygen atmosphere(1atm) to investigate their thermal stability and diffusion barrier property. $RuO_2$ thin films were thermally stable up to 700\ulcorner for 10min. in oxygen atmosphere and showed excellent barrier property against the interdiffusion of silicon and oxygen. After annealing at $750^{\circ}C$ , however, volatilization to higher oxide occurred at the surface and inside of $RuO_2$ thin film and diffusion barrier property was also deteriorated. When annealed at $800^{\circ}C$, $RuO_2$thin film showed a different microstructure from that of $RuO_2$ thin film annealed at 75$0^{\circ}C$. It is likely that surface defect structure of $RuO_2$, $RuO_3$, and excess oxygen had an influence on the mode of volatilization with increasing annealing temperature.

  • PDF