• Title/Summary/Keyword: Excavator Control

Search Result 193, Processing Time 0.024 seconds

Reliability Qualification Test of a Unmanned Control Robot System for an Excavator (굴삭기용 무인조종로봇 신뢰성 보증 시험에 대한 연구)

  • Back, Seung Jun;Son, Young Kap;Kim, Jun Hee;Lee, Jong Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • This paper proposes the development of a method for assessing the system reliability of an unmanned control robot system for an excavator. It then shows the results of the reliability qualification test based on the proposed method. The robot system functions to ensure the safety of the workers who control excavators in dangerous working environments, and the system reliability was calculated by integrating the reliabilities of the system components. Thus, test equipment for the three key units of the robot system were constructed and used in accelerated life testing. From the life testing results, guaranteed mean time between failures for the chosen confidence level was estimated, and the reliability qualification testing method of the robot system using small sample sizes was proposed.

A Study on the Pulsation Pressure Reduction for the Hydraulic System of Medium-large Excavator (중대형 굴삭기 유압시스템의 압력 맥동 저감 연구)

  • Kim, Young-Hyun;Joo, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • With hydraulic noise test facility, a variety of tests were performed to investigate the pulsation pressure generation mechanism and its transmission characteristics and to derive the noise control methodology. Many experiments were carried out by changing average pressure, flow rate, pump speed, hose length and MCV spool condition. From the test results, the correlations between pulsation pressure and other design parameters, such as static pressure, flow rate and MCV spool opening area and length of hose, were found out. And also each contribution factors were evaluated from the regression analysis. By changing hose length, the pulsation pressure resonance phenomenon was investigated. In order to find out the pulsation pressure reduction measures pulsation pressure analysis, such as pulsation pressure of hydraulic pump itself and pulsation pressure of hydraulic system, by using AMESim were studied. In addition hydraulic silencer was developed based on the Helmholtz resonator. And its performance was evaluated by installing the silencer at the excavator.

Human-Robot Cooperative Control for Construction Robot (건설로봇용 인간-로봇 협업 제어)

  • Lee, Seung-Yeol;Lee, Kye-Young;Lee, Sang-Heon;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.285-294
    • /
    • 2007
  • Previously, ASCI(Automation System for Curtain-wall Installation) which combined with a multi-DOF manipulator to a mini-excavator was developed and applied on construction site. As result, the operation by one operator and more intuitive operation method are proposed to improve ASCI's operation method which need one person with a remote joystick and another operating an excavator. The human-robot cooperative system can cope with various and untypical constructing environment through the real-time interacting with a human, robot and constructing environment simultaneously. The physical power of a robot system helps a human to handle heavy construction materials with relatively scaled-down load. Also, a human can feel and response the force reflected from robot end effecter acting with working environment. This paper presents the feasibility study regarding the application of the proposed human-robot cooperation control for construction robot through experiments on a 2DOF manipulator.

A Study on Object Detection Algorithm for Intelligent Excavator (자동화 굴삭기의 주변 장애물 탐지 알고리즘 개발에 관한 기초연구)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.373-376
    • /
    • 2007
  • The construction industry is an inevitable part of modem development. Now-a-days, the construction industry experiencing several issues related with the maintenance of productivity, quality and labor. Hence there is an immediate requirement for the development of technologies enabling the automated construction equipment. The new technologies should also assure the sufficient safety and efficiency. In the present investigation, an attempts have been made for the development of object sensing algorithm and safety control system for intelligent excavating system. we have analyzed some elemental technologies for sensing objects and also proposed a technology for safety control system as well. The proposed technology will highly influence the safe working performance of construction industry in the positive sense.

  • PDF

Development The Controller Remote Operation for Dozzer and Excavator (도저-굴삭기의 원격운전 제어기 개발)

  • Park, Doo-Yong;Shin, Young-Jin;Kim, Ho-Yol;Lee, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.246-248
    • /
    • 2005
  • The power plants have a loading dock and unloading device for the diverse kinds of fuel such as the bituminous coal and natural gas imported by the sea from all over the world. To unload the coal in the ship not only in the environment-friendly manner but also in the cost-effective way, the new type of heavy equipment loaded with additional features as well as excavator and the remote controller to maneuver this equipment are developed. This heavy equipment, which can be used to unload the coal in the ship in conjunction with CSU (Continuous Ship Unloader), and the remote controller are endorsed by the related code and laws. With the remote controller, the field workers can operate the unloading equipment at the remote place far from the equipment as well as in the cabin for themselves without tile remote controller.

  • PDF