• Title/Summary/Keyword: Excavation condition

Search Result 345, Processing Time 0.027 seconds

Modification of Strain-dependent Hydraulic Conductivity with RMR (RMR에 따른 변형률 의존 수리전도도 변화 해석)

  • 윤용균
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.44-51
    • /
    • 2003
  • Changes of the hydraulic conductivity resulting from the redistribution of stresses by underground excavation are examined using the strain-dependent hydraulic conductivity modification relation, where the modulus reduction ratio and induced strain are the major parameters. The modulus reduction ratio is defined in terms of RMR(Rock Mass Rating) to represent the full gamut of rock mass condition. Though shear dilation has the effect on the modification of hydraulic conductivity, the extent of it depends on RMR When the extensional strain is applied to a fracture, the hydraulic conductivity increases with the decrease of RMR Loading configuration has the effect on the modification of hydraulic conductivity, where the differential stress mode with a magnitude of the minimum principal stress $($\sigma$_x)$ fixed and a magnitude of the maximum principal stress $($\sigma$_y)$ varied is found to exert the greatest effect on the change of hydraulic conductivity.

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (II) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (II): 위험도를 고려한 최적화 모형)

  • Park, Sang-Woo;Jang, Suk-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1029-1037
    • /
    • 2005
  • Urban Storm Sewer Optimal Design Model(USSOD) was developed to compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming (DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify. After testing the model, it is also applied to Ulsan drainage basin which was developed by Korea Land Cooperation(KOLAND). Comparing the design results of USSOD with those of KOLAND, discharge capacity 0.35 $m^3/sec$, the crown elevation is 0.77m higher and return cost is $9\%$ less than design results of KOLAND, which verify the improvement of USSOD. Layout design model using GIS and optimization including detention or retention effect are needed in the future study.

Numerical Analysis on the Effect of Heterogeneous Nature of Rock Masses on Tunnel Behavior (터널 거동에 대한 암반 연약대의 영향 평가를 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of a tunnel. A tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to a safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysed by 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of the tunnel face can be possible.

  • PDF

Prediction of Ground Condition Changes Ahead of Tunnel Face Using Three-Dimensional Absolute Displacement Analysis (터널 3차원 절대변위 해석기법을 이용한 막장전방지반 예측)

  • Bang, Joon-Ho;Han, Il-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.101-113
    • /
    • 2006
  • Arching effect occurs around the unsupported excavation surface near to tunnel face when a tunnel is excavated in a stable rock mass. If a weak fracture zone exists in front of tunnel face, a displacement occurs between tunnel face and weak fracture zone due to stress concentration. If three-dimensional absolute coordinates (longitudinal, transverse, vertical direction) is measured at tunnel face by geodetic method, the ground change in front of the tunnel face can be predicted by analysing three-dimensional absolute displacement. The purpose of this study is to verify the analysis method of three-dimensional absolute displacement by comparing the trend of displacement ratio at crown and sidewall of tunnel and the influence line/trend line of crown settlement compared with TSP results in the same section.

  • PDF

An Experimental Study on Shield TBM Tunnel Face Stability in Soft Ground (연약지반에서의 쉴드 TBM 굴착시 막장면 안정성 평가를 위한 실험적 연구)

  • Kim, Yong-Man;Lee, Sang-Duk;Choo, Seok-Yeon;Koh, Sung-Yil
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • In this study, we carried out an experimental shield TBM excavation model test using a down-scale device in soft clay, to understand tunnel-face stability properties in relation to changes in slurry pressure. We performed five tests according to tunnel depth (0.5D, 0.75D, 1.0D, 1.25D, 1.5D), and compared theoretical tunnel-face pressure with model test results. The range in theoretical tunnel-face slurry pressure ($P_{min}{\leq}P_{slurry\;pressure}{\leq}P_{max}$), which is determined by earth pressure and water level, was very similar to the model test result. This result was due to the more isotropic condition of the soft clay ground, than of rocky ground.

A research on the selection of subject and its legal and institutional guarantee concerning protection of the intellectual property of traditional medicine (전통의약분야의 지적 재산권 보호를 위한 대상 발굴 및 법적.제도적 보장 방안 연구)

  • Kim, Hong-Jun;Lee, Sang-Jung;Ju, Young-Sung
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.2 s.9
    • /
    • pp.47-65
    • /
    • 2002
  • This project is planned to grasp the present situation of traditional medicine part in our country and to study protection method about this by the intellectual property which is the international concerning point recently. Through this, we will be able to devise means to deal with protection method of traditional medicine being developed by WIPO now. Traditional medicine field In our country Is organized with specific condition separated into the part of institution and the part of non-institution. So, because of the closed peculiarity, we have experienced the difficulties to understand the real facts about traditional medicine. We cannot be indifferent to the matter anymore. Because the expectation of object people is high, we could expect the realization of research content. In 1 detail project, we investigated the situation of traditional medicine in our country through various collecting methods for excavation of oriental treatment technique and herb medicine which is worth protecting. With it, we sorted again into 56 kinds of 11 parts through analysis of validity in the way of oriental medicine. And we tried to link this up 2 detail project which is about legal and institutional guarantee concerning protection. furthermore, we tried to find approach ways for security of objectivity into 4 steps with the example of model disease. we could complete practical classification of traditional medicine in our country. In 2 detail project, we studied the protection method by the intellectual property through research result in 1 detail project. For this, we observed an outline of the intellectual property including a patent application analysis in folk traditional medicine part, and problems of traditional medicine protection and world trend by traditional knowledge protection tendency and the patent law In domestic traditional medicines, the aspects unprotectable with the patent law now were remained. So, we suggested supplementary plan. And we also suggested the freedom of utilization between traditional medicine possession countries (in-situ utilization) and the demand compensation payment for a third country (ex-situ utilization) in connection with international movement.

  • PDF

Analysis of Earth Pressure Acting on Vertical Circular Shaft Considering Aching Effect (I) - A Study on Centrifuge Model Tests - (아칭효과를 고려한 원형수직터널의 토압 특성 분석 (I) - 원심모형실험 연구 -)

  • Kim, Kyoung-Yul;Lee, Dae-Soo;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.23-31
    • /
    • 2012
  • The purpose of this study is to analyze earth pressure acting on a circular shaft-tunnel considering arching effect by centrifuge modeling test on sands. The centrifuge testing method provides a way to model an in-situ stress state condition with a stress gradient within a laboratory specimen. A small-scale model of circular shaft-tunnel, which has a real diameter of 6.0 m and height of 15.0 m, was designed and tested twice under 75g-level. Additionally, an effect of excavation was presented by separating two segments of circular shaft wall to find behavioral properties and strength of earth pressure along with excavating ground. The test results were compared with those of the proposed earth pressure equation. The test results showed that earth pressure decreased by about 70% in comparison with existing two-dimensional earth pressure. This fact might be attributed to three-dimensional arching effects.

Theoretical and Numerical Study on the Support Pressure for Tunnel Face Stability in Shield TBM Construction (쉴드터널 시공 시 막장안정을 위한 지보압의 이론적.수치해석적 고찰)

  • Kim, Kwang-Jin;Koh, Sung-Yil;Choo, Seuk-Yeun;Kim, Jong-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.197-204
    • /
    • 2006
  • A large sectional tunnelling method using Shield TBM is expected to be popular as domestic demand of long tunnel gets growing. Although a shield tunnelling method has been recognized as prominent method in consideration of stability and applicability in shallow and poor ground, the cases of accident and constructional trouble have been often happened due to unexpected poor ground condition, or selection and use of improper shield machine. Especially, troubling cases at tunnel face are frequently occurred, so supporting pressure control of tunnel face would be the main issue for securing safer and more efficient tunnel excavation using Shield TBM. In this point, we carried out the numerical feed-back analysis to compare the ground deformation pattern with theoretical result at tunnel face.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

An analytical model for assessing soft rock tunnel collapse risk and its engineering application

  • Xue, Yiguo;Li, Xin;Li, Guangkun;Qiu, Daohong;Gong, Huimin;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.441-454
    • /
    • 2020
  • The tunnel collapse, large deformation of surrounding rock, water and mud inrush are the major geological disasters in soft rock tunnel construction. Among them, tunnel collapse has the most serious impact on tunnel construction. Current research backed theories have certain limitations in identifying the collapse risk of soft rock tunnels. Examining the Zhengwan high-speed railway tunnel, eight soft rock tunnel collapse influencing factors were selected, and the combination of indicator weights based on the analytic hierarchy process and entropy weighting methods was obtained. The results show that the groundwater condition and the integrity of the rock mass are the main influencing factors leading to a soft rock tunnel collapse. A comprehensive fuzzy evaluation model for the collapse risk of soft rock tunnels is being proposed, and the real-time collapse risk assessment of the Zhengwan tunnel is being carried out. The results obtained via the fuzzy evaluation model agree well with the actual situation. A tunnel section evaluated to have an extremely high collapse risk and experienced a local collapse during excavation, verifying the feasibility of the collapse risk evaluation model. The collapse risk evaluation model proposed in this paper has been demonstrated to be a promising and innovative method for the evaluation of the collapse risk of soft rock tunnels, leading to safer construction.