• Title/Summary/Keyword: Excavating robot

Search Result 5, Processing Time 0.034 seconds

Introduction to the Intelligent Excavating System: Concept design of Intuitive Operator Control Unit (지능형 굴삭시스템 개발: 직감형 원격제어 시스템 개념설계)

  • Yu, Byung-Gab;Lee, Seung-Yeol;Lee, Sang-Ho;Yu, Seok-Jong;Yu, Bo-Hyun;Jang, June-Hyun;Han, Chang-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.68-73
    • /
    • 2007
  • Civil engineering construction work has always been accompanied by a high proportion of tasks that are either dangerous or unpleasant or both. Enhancing the general working environment and boosting safety levels are critical issues for the industry. In addition to that, the industry has been slow to utilize automation & robot technology, and there is substantial scope for the use of technology th boost efficiency, cut costs and improve quality levels in construction. In a bid to address this issue, Ministry of Construction & Transportation launched a five-year project in 2003 entitled Development of Intelligent Excavating System. The aim of the project is to use telecommunications and robotics technology to minimize inefficiencies and eliminate the dangerous and unpleasant aspects of tile construction process through the development of specific applications such as IT-equipped construction machinery and advanced construction management systems. In this paper, the project introduces on the research and development content related to multi-disciplinary, a intuitive operator control unit(Robot Technology) included.

  • PDF

Object Detection From 3D Terrain Data Gener Ated by Laser Scanner of Intelligent Excavating System(IES) (굴삭 자동화를 위한 레이저 스캐너 기반의 3차원 객체 탐지 알고리즘의 개발)

  • Yoo, Hyun-Seok;Park, Ji-Woon;Choi, Youn-Nyung;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.130-141
    • /
    • 2011
  • The intelligent excavating system(IES), the development in South Korea of which has been underway since 2006, aims for the full-scale automation of the excavation process that includes a series of tasks such as movement, excavation and loading. The core elements to ensure the quality and safety of the automated excavation equipment include 3D modeling of terrain that surrounds the excavating robot and the technology for detecting objects accurately(i.e., for detecting the location of nearby loading trucks and humans as well as of obstacles positioned on the movement paths). Therefore the purpose of this research is to ensure the quality and safety of automated excavation detecting the objects surrounding the excavating robot via a 3D laser scanning system. In this paper, an algorithm for estimating the location, height, width, and shape of objects in the 3D-realized terrain that surrounds the location of the excavator was proposed. The performance of the algorithm was verified via tests in an actual earthwork field.

Development of Intelligent Excavating System - Introduction of research progress - (지능형 굴삭시스템 개발 - 2차 년도 연구내용 -)

  • Seo, Jong-Won;Kim, Young-Wook;Jang, Dal-Sik;Lee, Seung-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.184-192
    • /
    • 2008
  • Recently, one of the solutions for the problems of construction industry such as low productivity, lack of experts, insufficiency of manpower, high percentage of calamity and so forth, construction automation which let underdeveloped construction production system be a ultramodern technology is under research. Internal study of construction automation has been initiated since 1980s focusing on robotics and semi-automation for reduction of labor. Therefore development of construction robots is being concentrated with the high development of information technology and Intelligent Excavating System(IES) project had been launched by ministry of land, transportation, and maritime affairs as one way of construction technology revolution business. This study introduces the final goal and the research progress until second year of IES.

  • PDF

Robust Control for Trajectory Tracking Control of Field Robot (필드로봇의 궤적 추종에 대한 강인제어)

  • 최종환;김승수;양순용;이병룡;안경관;이진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.463-466
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this paper, to field-robotize a hydraulic excavator, we have proposed a robust and systematic controller design method. Disturbance observer is used as inner controller to reshape the excavating system into the linear dynamics of nominal model by compensating coupled nonlinear terms, model uncertainties and external load variations. Using the linear model that is obtained through off-line system identification, a H control scheme is applied to construct a disturbance observer and a servo-controller systematically.

  • PDF

Development of Intelligent Excavating System;Introduction of research center (지능형 굴삭시스템 개발;연구단 소개)

  • Seo, Jong-Won;Park, Chang-Woo;Jang, Dal-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.197-204
    • /
    • 2007
  • Nowadays, the construction industry is suffering from the decrease of labor productivity caused by the lack of skilled workers and the aging labor forces. The hazardous work conditions and safety problems still exist at the construction sites. The earthwork operation is not the exception. The number of skilled earthwork equipment operators has been rapidly reduced and the equipment needs to be operated in dangerous / hazardous work sites. Thus, through the development of intelligent excavating system, Intelligent Excavating System(I.E.S) research team tries to enhance the safety of work environment, productivity, quality, and payability of the earthwork operation. It is also expected that this research contributes to the development of fundamental construction automation technologies and to the creation a new market sector.

  • PDF