• Title/Summary/Keyword: Evolved Fuzzy Machine

Search Result 2, Processing Time 0.015 seconds

Legged Robot Trajectory Generation using Evolved Fuzzy Machine for IoT Environments (IoT 환경을 위한 진화된 퍼지머신을 이용한 로봇의 궤적생성)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.59-65
    • /
    • 2020
  • The Internet of Things (IoT) era, in which all items used in daily life are equipped with a network connection function, and they are closely linked to increase the convenience of life and work, has opened wide. Robots also need to develop according to the IoT environment. A use of new type of evolved fuzzy machine (EFM) for generating legged robot trajectory in IoT enviornmentms is discussed in this paper. Fuzzy system has been widely used for describing nonlinear systems. In fuzzy system, determination of antecedent and consequent structures of fuzzy model has been one of the most important problems. EFM is described which carries out evolving antecedent and consequent structure of fuzzy system for legged robot. To generate the robot trajectory, parameters of each structure in the fuzzy system are tuned automatically by the EFM. The results demonstrate the performance of the proposed approach for the legged robot.

System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems

  • Chen, C.Y.J.;Kuo, D.;Hsieh, Chia-Yen;Chen, Tim
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.797-807
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. This paper proposes a novel artificial intelligence based EBA (Evolved Bat Algorithm) controller with machine learning matched membership functions in the complex nonlinear system. The proposed affine transformed membership functions are adopted and stabilization and performance criterion of the closed-loop fuzzy systems are obtained through a new parametrized linear matrix inequality which is rearranged by machine learning affine matched membership functions. The trajectory of the closed-loop dithered system and that of the closed-loop fuzzy relaxed system can be made as close as desired. This enables us to get a rigorous prediction of stability of the closed-loop dithered system by establishing that of the closed-loop fuzzy relaxed system.