• Title/Summary/Keyword: Evolutionary method

Search Result 585, Processing Time 0.037 seconds

An Optimization Method using Evolutionary Computation in Large Scale Power Systems (진화연산을 이용한 대규모 전력계통의 최적화 방안)

  • You, Seok-Ku;Park, Chang-Joo;Kim, Kyu-Ho;Lee, Jae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.714-716
    • /
    • 1996
  • This paper presents an optimization method for optimal reactive power dispatch which minimizes real power loss and improves voltage profile of power systems using evolutionary computation such as genetic algorithms(GAs), evolutionary programming(EP). and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most these approaches have the common defect of being caught to a local minimum solution. Recently, global search methods such as GAs, EP, and ES are introduced. The proposed methods were applied to the IEEE 30-bus system. Each simulation result, compared with that obtained by using a conventional gradient-based optimization method, Sequential Quadratic Programming (SQP), shows the possibility of applications of evolutionary computation to large scale power systems.

  • PDF

Evolutionary design of Takagi-Sugeno type fuzzy model for nonlinear system identification and time series

  • Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.1-93
    • /
    • 2001
  • An evolutionary approach for the design of Fuzzy Logic Systems(FLSs) is proposed. Membership functions(MFs) in Takagi-Sugeno type fuzzy logic system is optimized through evolutionary process. Output singleton values are obtained through pseudo-inverse method. The proposed technique is unique for that, to prevent overfilling phenomenon, limited-level RBF membership functions are used and the new fitness function is invented. To show the effectiveness of the proposed method, some simulations results on model identification are given.

  • PDF

A Study on the Design Automation of R/C Beam Using Analogy Evolutionary Procedure (유사 점진적 최적화 기법에 의한 철근콘크리트 구조물의 설계자동화에 관한 연구)

  • 엄대호;이정재;윤성수;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.219-224
    • /
    • 1999
  • In this study New design automation method of R/C structure based on the finite element method and the analogy evolution ary procedure was developed . This system is the efficient tool to support Reinforcement Arrangement of R/C structure. The anology evolutionary procecure is similar to the evolutionary procedure proposed by Xie and Steven.

  • PDF

Adaptive Learning Control of Neural Network Using Real-Time Evolutionary Algorithm (실시간 진화 알고리듬을 통한 신경망의 적응 학습제어)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1092-1098
    • /
    • 2002
  • This paper discusses the composition of the theory of reinforcement teaming, which is applied in real-time teaming, and evolutionary strategy, which proves its the superiority in the finding of the optimal solution at the off-line teaming method. The individuals are reduced in order to team the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It is possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because of the teaming process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes. In the future, studies are needed on the proof of the theory through experiments and the characteristic considerations of the robustness against the outside disturbances.

Simultaneously evolutionary optimization of several natural frequencies of a two dimensional structure

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.447-456
    • /
    • 1999
  • This paper presents a solution method, which can be regarded as the further extension of the generalized evolutionary method (Zhao et al. 1998a), for the simultaneous optimization of several different natural frequencies of a structure in general and a two dimensional structure in particular. The main function of the present method is to optimize the topology of a structure so as to simultaneously make several different natural frequencies of interest to be of the corresponding different desired values for the target structure. In order to develop the present method, the new contribution factor of an element is proposed to consider the contribution of an element to the gaps between the currently calculated values for the different natural frequencies of interest and their corresponding desired values in a weighted manner. Using this new contribution factor of an element, the most inefficiently used material can be detected and removed gradually from the design domain of a structure. Through applying the present method to optimize two and three different natural frequencies of a two dimensional structure, it has been demonstrated that it is possible and applicable to use the generalized evolutionary method for tackling the simultaneous optimization of several different natural frequencies of a structure in the structural design.

Comparison and Analysis of Competition Strategies in Competitive Coevolutionary Algorithms (경쟁 공진화 알고리듬에서 경쟁전략들의 비교 분석)

  • Kim, Yeo Keun;Kim, Jae Yun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.87-98
    • /
    • 2002
  • A competitive coevolutionary algorithm is a probabilistic search method that imitates coevolution process through evolutionary arms race. The algorithm has been used to solve adversarial problems. In the algorithms, the selection of competitors is needed to evaluate the fitness of an individual. The goal of this study is to compare and analyze several competition strategies in terms of solution quality, convergence speed, balance between competitive coevolving species, population diversity, etc. With two types of test-bed problems, game problems and solution-test problems, extensive experiments are carried out. In the game problems, sampling strategies based on fitness have a risk of providing bad solutions due to evolutionary unbalance between species. On the other hand, in the solution-test problems, evolutionary unbalance does not appear in any strategies and the strategies using information about competition results are efficient in solution quality. The experimental results indicate that the tournament competition can progress an evolutionary arms race and then is successful from the viewpoint of evolutionary computation.

Balancing and Sequencing in Mixed Model Assembly Lines Using an Endosymbiotic Evolutionary Algorithm (내공생 진화알고리듬을 이용한 혼합모델 조립라인의 작업할당과 투입순서 결정)

  • 김여근;손성호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.109-124
    • /
    • 2001
  • This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed model assembly lines (MMALs). Line balancing and model sequencing are important for an efficient use of MMALs. The two problems of balancing and sequencing MMALs are tightly related with each other. However, In almost all the existing researches on mixed-model production lines, the two problems have been considered separately. In this research, an endosymbiotic evolutionary a1gorithm, which is a kind of coevolutionary a1gorithm, is adopted as a methodology in order to solve the two problems simultaneously. This paper shows how to apply an endosymbiotic evolutionary a1gorithm to solving the integrated problem. Some evolutionary schemes are used In the a1gorithm to promote population diversity and search efficiency. The proposed a1gorithm is compared with the existing evolutionary algorithms in terms of solution quality and convergence speed. The experimental results confirm the effectiveness of our approach.

  • PDF

Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization (다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.869-874
    • /
    • 2007
  • In searching for solutions to multiobjective optimization problem, we find that there is no single optimal solution but rather a set of solutions known as 'Pareto optimal set'. To find approximation of ideal pareto optimal set, search capability of diverse individuals at population space can determine the performance of evolutionary algorithms. This paper propose the method to maintain population diversify and to find non-dominated alternatives in Game model based Co-Evolutionary Algorithm.

Comparison of Evolutionary Computation for Power Flow Control in Power Systems (전력계통의 전력조류제어를 위한 진화연산의 비교)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an unified method which solves real and reactive power dispatch problems for the economic operation of power systems using evolutionary computation such as genetic algorithms(GA), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most of these approaches have the common defect of being caught to a local minimum solution. The proposed methods, applied to the IEEE 30-bus system, were run for 10 other exogenous parameters and composed of P-optimization module and Q-optimization module. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

Design of Digital Circuit Structure Based on Evolutionary Algorithm Method

  • Chong, K.H.;Aris, I.B.;Bashi, S.M.;Koh, S.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2008
  • Evolutionary Algorithms (EAs) cover all the applications involving the use of Evolutionary Computation in electronic system design. It is largely applied to complex optimization problems. EAs introduce a new idea for automatic design of electronic systems; instead of imagine model, ions, and conventional techniques, it uses search algorithm to design a circuit. In this paper, a method for automatic optimization of the digital circuit design method has been introduced. This method is based on randomized search techniques mimicking natural genetic evolution. The proposed method is an iterative procedure that consists of a constant-size population of individuals, each one encoding a possible solution in a given problem space. The structure of the circuit is encoded into a one-dimensional genotype as represented by a finite string of bits. A number of bit strings is used to represent the wires connection between the level and 7 types of possible logic gates; XOR, XNOR, NAND, NOR, AND, OR, NOT 1, and NOT 2. The structure of gates are arranged in an $m{\times}n$ matrix form in which m is the number of input variables.