• 제목/요약/키워드: Evolutionary feature extraction

검색결과 4건 처리시간 0.02초

소나 표적의 특징정보추출을 위한 진화적 PSR 추정 알고리즘 (Evolutionary PSR Estimation Algorithm for Feature Extraction of Sonar Target)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.632-637
    • /
    • 2008
  • 실제 시스템 적용에 있어서, 소나 표적의 특징정보추출을 위한 PSR(Propeller Shaft Rate) 추정 알고리즘은 다음과 같은 문제점들을 가지고 있다. 즉, 주파수 스펙트럼 기반의 소나 표적 식별에 있어서 다중의 스펙트럼 선들로부터 기본 주파수와 그 고조파들로 구성된 하모닉군을 구별하는 깃은 필수적이면서도 어렵기 때문에 정확하고 효율적인 기본주파수 발견법을 요구한다. 나아가, 구조와 파라메터에 있어서 용이한 설계 절차를 요구한다 이 문제들을 해결하기 위해서 전문가 지식 및 진화 전략(ES : Evolution Strategy)을 이용하는 진화적인PSR 추정 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해서는 소나 표적의 PSR 추정이 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실시간 시스템 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.

수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘 (Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.629-634
    • /
    • 2009
  • 실시간 시스템 적용에 있어서, 수동 소나 표적의 식별을 위한 특징정보 추출 및 스코어링 알고리즘은 다음과 같은 문제점들을 가지고 있다. 즉, 주파수 스펙트럼으로부터 PSR(Propeller Shaft Rate) 및 BR(Blade rate) 등의 특징정보를 실시간으로 구별하는 것은 매우 어렵기 때문에 정확하고 효율적인 특징정보 추출(extraction)법을 요구한다. 또한, 추출된 특징정보들로 구성된 식별 DB(DataBase)는 잡음 및 불완전한 구성을 갖기 때문에 강인하고 효과적인 특징정보 스코어링(scoring)법을 요구한다. 나아가, 구조와 파라메터에 있어서 용이한 설계 절차를 요구한다. 이러한 문제들을 해결하기 위해서 진화 전략(ES : Evolution Strategy) 및 퍼지(fuzzy) 이론을 이용하는 지능형 특징정보 추출 및 스코어링 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해서는 수동 소나 표적의 실시간 식별이 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실시간 시스템 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.

A Supervised Feature Selection Method for Malicious Intrusions Detection in IoT Based on Genetic Algorithm

  • Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.49-56
    • /
    • 2023
  • Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.

영상의 색체 강도 엔트로피를 이용한 나비 종 자동 인식 향상 방법 (A Performance Improvement of Automatic Butterfly Identification Method Using Color Intensity Entropy)

  • 강승호;김태희
    • 한국콘텐츠학회논문지
    • /
    • 제17권5호
    • /
    • pp.624-632
    • /
    • 2017
  • 영상을 이용한 나비 종 자동 인식 기법은 생물종 다양성 연구 및 종의 진화, 발달 과정의 연구를 위한 기초 작업을 돕는 것으로 연구자들의 관심이 높다. 기계학습 기반의 나비 종 인식 시스템은 사용하는 특징 추출 방법에 성능이 크게 좌우되는 성질을 가지고 있다. 본 논문은 나비 영상이 가진 색채 강도의 분포를 이용하는 색채 강도 (Color Intensity) 엔트로피를 제안하고 기존에 제시된 가지 길이 유사성 (Branch Length Similarity) 엔트로피와 함께 사용할 경우 10% 이상의 인식률 향상을 얻을 수 있음을 보인다. 제안한 방법의 신뢰성 있는 성능 평가를 위해 영상 인식에 자주 사용되는 대표적인 특징 추출 방법인 아이겐 이미지, 2D 푸리에 변환, 2D 웨이블릿 변환 방법들을 비교 대상으로 다양한 기계학습을 이용해 성능을 평가한다.