• 제목/요약/키워드: Evolutionary approach

검색결과 287건 처리시간 0.032초

진화알고리듬을 이용한 혼합모델 U라인의 작업할당과 투입순서 결정 (Balancing and sequencing mixed-model U-lines using evolutionary algorithm)

  • 김재윤;김여근
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.930-935
    • /
    • 2002
  • This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed-model U-lines (MMULs). Balancing and sequencing problem are important for an efficient use of MMULs and are tightly related with each other. However, in almost all the existing researches on mixed­model production lines, the two problems have been considered separately. In 1his research, an endosymbiotic evolutionary algorithm, which is a kind of evolutionary algorithm, is adopted as a methodology in order to solve the two problems simultaneously. Some evolutionary search capability, rapidity of convergence and population diversity. The proposed algorithm is compared with the existing evolutionary algorithm in terms of solution quality. The experimental results confirm the effectiveness of our approach.

  • PDF

A Co-Evolutionary Computing for Statistical Learning Theory

  • Jun Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.281-285
    • /
    • 2005
  • Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.

높은 신뢰도의 네트워크 설계를 위한 진화 연산에 기초한 알고리즘 (An Algorithm based on Evolutionary Computation for a Highly Reliable Network Design)

  • 김종율;이재욱;현광남
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권4호
    • /
    • pp.247-257
    • /
    • 2005
  • 일반적으로 네트워크 설계 문제는 네트워크의 크기가 늘어남에 따라 지수적으로 복잡도가 증가하여 전통적인 방법으로는 풀이하기 힘든 NP-hard 조합 최적화 문제 중의 하나로 분류될 수 있다. 본 논문에서는 네트워크 신뢰도 제약을 고려하면서 네트워크 구축비용을 효과적으로 최소화하는, 높은 신뢰도의 네트워크 토폴로지 설계 문제를 풀기 위해 스패닝 트리를 효율적으로 표현할 수 있는 Prufer수(PN) 기반의 진화 연산법과 2-연결성을 고려하는 휴리스틱 방법으로 구성된 두 단계의 효율적인 해법을 제안한다. 즉, 먼저 스패닝 트리를 찾아내기 위해 진화 연산법 중에 보편적으로 널리 알려져 있는 유전자 알고리즘(GA)을 이용하고 그 다음으로 첫 번째 단계에서 발견한 스패닝 트리에 대해 최적의 네트워크 토폴로지를 찾기 위해서 2-연결성을 고려한 휴리스틱 방법을 적용한다. 마지막으로 수치예의 결과를 통해 제안한 해법의 성능에 대해서 살펴보도록 한다.

뇌기반 진화적 접근법에 따른 과학 자유탐구에 대한 초등학교 학생의 인식 (Elementary School Students' Perceptions on Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach)

  • 백자연;임채성;김재영
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제34권1호
    • /
    • pp.109-122
    • /
    • 2015
  • In National Curriculum of Science revised in 2007, free inquiry was newly introduced to increase student's interest in science and to foster creativity by having students make their own curiosity questions and find answers by themselves. The purpose of this study is to analyze elementary school students' perceptions on free science inquiry activities applying a brain-based evolutionary approach. For this study, 106 the fifth grade students participated, and then completed a questionnaire on free inquiry activities according to a brain-based evolutionary science teaching and learning principles. The students performed a series of steps of the Diversifying, Estimating-Evaluating-Executing, and Furthering activities in each of Affective, Behavioral, and Cognitive domains (ABC-DEF approach) and constructed their own free inquiry diary, then the observations by the researcher and interviews with the students were analyzed both quantitatively and qualitatively. The major results of the study were as follows: First, the majority of the students perceived the each domain and step positively although a few of them perceived negatively. The reasons perceived as negatively were categorized into two; preference dimension of like or dislike and ability dimension of metacognitive or self-reflective capacity. Also, they perceived the free inquiry experience in the form of ABC-DEF as helpful to understand the nature of scientists' scientific activities. Based on these findings, implications for supporting authentic inquiry in school science are discussed.

뇌 기반 진화적 접근법을 적용한 초등학교 학생의 과학 자유탐구에서 행동 영역 분석 (Analyses on Elementary Students' Behavioral Domain in Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach)

  • 김재영;임채성;백자연
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제33권3호
    • /
    • pp.579-587
    • /
    • 2014
  • In National Curriculum of Science revised in 2007, 'Free Inquiry' was newly introduced to increase student's interest in science and to foster creativity by having students make their own questions and find answers by themselves. The purpose of the study was to analyze characteristics deployed in the processes of elementary school students' free inquiry activities applying a brain-based evolutionary science teaching and learning principles. For this study, 106 the fifth grade students participated, and they performed individually free inquiry activities according to a brain-based evolutionary approach. In order to characterize the diversifying, estimating-evaluating-executing, and extending-applying activities in behavioral domain, the free inquiry diary constructed by the students, observations by the researcher, and interviews with the students were analyzed both quantitatively and qualitatively. The major results of this study were as follows: First, the students preferred basic inquiry process skills and the majority of the students selected observation as a major approach of their inquiry. The reason was found to be that they were accustomed to only typical basic inquiry skills which is frequently presented at textbooks and regular instruction and didn't have appropriate experience for using relevant integrative inquiry skills. Second, most of the methods diversified and selected by the students were confined to descriptive explanation rather than causal one. Third, both of the science attitude and academic achievement were associated with the number of diversified methods and the selection of appropriate method. Based on these findings, implications for supporting domain novices in inquiry learning environments are advanced.

Multi-objective Optimization Model with AHP Decision-making for Cloud Service Composition

  • Liu, Li;Zhang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3293-3311
    • /
    • 2015
  • Cloud services are required to be composed as a single service to fulfill the workflow applications. Service composition in Cloud raises new challenges caused by the diversity of users with different QoS requirements and vague preferences, as well as the development of cloud computing having geographically distributed characteristics. So the selection of the best service composition is a complex problem and it faces trade-off among various QoS criteria. In this paper, we propose a Cloud service composition approach based on evolutionary algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective evolutionary approaches and Decision-Making method (AHP) to solve Cloud service composition optimization problem. The weights generated from AHP are applied to the Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm beats single-objective algorithms on the optimization ability. And compared with general multi-objective algorithms, it is able to precisely capture the users' preferences. The results of the simulation also show that our approach can achieve a better scalability.

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

  • Sim, Kwee-Bo;Lee, Dong-Wook;Kim, Ji-Yoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.463-474
    • /
    • 2004
  • Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

An Evolutionary Computing Approach to Building Intelligent Frauds Detection System

  • Kim, Jung-Won;Peter Bentley;Chol, Jong-Uk;Kim, Hwa-Soo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.97-108
    • /
    • 2001
  • Frauds detection is a difficult problem, requiring huge computer resources and complicated search activities Researchers have struggled with the problem. Even though a fee research approaches have claimed that their solution is much better than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds. a novel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new self of decision-makin rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.

  • PDF

Evolutionary Computation Approach to Wiener Model Identification

  • Oh, Kyu-Kwon;Okuyama, Yoshifumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.33.1-33
    • /
    • 2001
  • We address a novel approach to identify a nonlinear dynamic system for Wiener models, which are composed of a linear dynamic system part followed by a nonlinear static part. The aim of system identification here is to provide the optimal mathematical model of both the linear dynamic and the nonlinear static parts in some appropriate sense. Assuming the nonlinear static part is invertible, we approximate the inverse function by a piecewise linear function. We estimate the piecewise linear inverse function by using the evolutionary computation approach such as genetic algorithm (GA) and evolution strategies (ES), while we estimate the linear dynamic system part by the least squares method. The results of numerical simulation studies indicate the usefulness of proposed approach to the Wiener model identification.

  • PDF