• 제목/요약/키워드: Evolutionary Technique

검색결과 160건 처리시간 0.067초

AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법 (Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station)

  • 현병용;이용희;서기성
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.

A Novel Dynamic Optimization Technique for Finding Optimal Trust Weights in Cloud

  • Prasad, Aluri V.H. Sai;Rajkumar, Ganapavarapu V.S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2060-2073
    • /
    • 2022
  • Cloud Computing permits users to access vast amounts of services of computing power in a virtualized environment. Providing secure services is essential. There are several problems to real-world optimization that are dynamic which means they tend to change over time. For these types of issues, the goal is not always to identify one optimum but to keep continuously adapting to the solution according to the change in the environment. The problem of scheduling in Cloud where new tasks keep coming over time is unique in terms of dynamic optimization problems. Until now, there has been a large majority of research made on the application of various Evolutionary Algorithms (EAs) to address the issues of dynamic optimization, with the focus on the maintenance of population diversity to ensure the flexibility for adapting to the changes in the environment. Generally, trust refers to the confidence or assurance in a set of entities that assure the security of data. In this work, a dynamic optimization technique is proposed to find an optimal trust weights in cloud during scheduling.

제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법 (Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data)

  • 오상헌;안창욱
    • 스마트미디어저널
    • /
    • 제10권3호
    • /
    • pp.23-30
    • /
    • 2021
  • 제조 시계열 데이터 클러스터링 기법은 제조 대용량 데이터 기반 군집화를 통한 설비 및 공정 이상 탐지 분류를 위한 중요한 솔루션이지만 기존 정적 데이터 대상 클러스터링 기법을 시계열 데이터에 적용함에 있어 낮은 정확도를 가지는 단점이 있다. 본 논문에서는 진화 연산 기반 시계열 군집 분석 접근 방식을 제시하여 기존 클러스터링 기술에 대한 정합성 향상하고자 한다. 이를 위하여 먼저 제조 공정 결과 이미지 형상을 선형 스캐닝을 활용하여 1차원 시계열 데이터로 변환하고 해당 변환 데이터 대상으로 Pearson 거리 매트릭을 기반으로 계층적 군집 분석 및 분할 군집 분석에 대한 최적 하위클러스터를 도출한다. 해당 최적 하위클러스터 대상 유전 알고리즘을 활용하여 유사도가 최소화되는 최적의 군집 조합을 도출한다. 그리고 실제 제조 과정 이미지 대상으로 기존 클러스터링 기법과 성능 비교를 통하여 제안된 클러스터링 기법의 성능 우수성을 검증한다.

종분화 기법을 이용한 진화 하드웨어의 다양성 향상 (Increasing Diversity of Evolvable Hardware with Speciation Technique)

  • 황금성;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권1호
    • /
    • pp.62-73
    • /
    • 2005
  • 진화 하드웨어(evolvable hardware)는 재구성 가능한 디지털 회로에 진화연산이 적용되어 실시간으로 환경에 적응함으로써 필요한 기능을 자동적으로 구현하는 기술이다. 이는 하드웨어 회로의 자동설계 가능성을 열어 주었지만, 아직 복잡한 회로를 얻기에는 한계가 있다. 본 논문에서는 진화 하드웨어의 적합도 공간을 분석하여, 다양한 개체가 동시에 진화되는 종분화 기법을 제안하고 그 효율성을 실험적으로 보인다. 또한 종분화 기법으로 얻은 다양한 회로를 분석하여 유용한 부가 기능이 창출될 수 있음을 보인다.

PSO의 특징과 차원성에 관한 비교연구 (Comparative Study on Dimensionality and Characteristic of PSO)

  • 박병준;오성권;김용수;안태천
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법 (Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space)

  • 서기성
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.

진화 신경회로망을 이용한 이중 탱크의 수위제어 (Control of Coupled Tank Level using Evolutionary Neural Network)

  • 이주필;김수용;박두환;김태우;지석준;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.550-552
    • /
    • 1999
  • This paper describes a control technique of coupled tank level using Evolutionary Neural Network. In general, the control of tank level without a dangerous overflow and with a high accuracy is difficult because of higher order time delay and nonlinearity. Nonetheless, proposed Evolution Neural Network controller in this paper was successfully implemented and simulation results of the superiority over a conventional PID one was investigated.

  • PDF

다양성을 유지하는 새로운 진화 프로그래밍 기법 (A New Diversity Preserving Evolutionary Programming Technique)

  • 신정환;진성일;최두현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.1011-1014
    • /
    • 1999
  • In this paper, a new algorithm has been presented that helps to preserve diversity as well as to enhance the convergence speed of the evolutionary programming. This algorithm is based on the cell partitioning of search region for preserving the diversity. Until now, the greater part of researches is not concerned about preserving the diversity of individuals in a population but improving convergence speed. Although these evolutions are started from multi-point search at the early phase, but at the end those search points are swarming about a one-point, the strong candidate. These evolutions vary from the original idea in some points such as multi-point search. In most case we want to find the only one point of the best solution not several points in the vicinity of that. That is why the cell partitioning of search region has been used. By restricting the search area of each individual, the diversity of individual in solution space is preserved and the convergence speed is enhanced. The efficiency of the proposed algorithm has been verified through benchmark test functions.

  • PDF