• Title/Summary/Keyword: Evolution strategy

Search Result 481, Processing Time 0.028 seconds

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

Evolutionary PSR Estimation Algorithm for Feature Extraction of Sonar Target (소나 표적의 특징정보추출을 위한 진화적 PSR 추정 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.632-637
    • /
    • 2008
  • In real system application, the propeller shaft rate (PSR) estimation algorithm for the feature extraction of the sonar target operates with the following problems: it requires both accurate and efficient the fundamental finding method because it is essential and difficult to distinguish harmonic family composed of the fundamental and its harmonics from the multiple spectral lines in the frequency spectrum-based sonar target classification, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an evolutionary PSR estimation algorithm using an expert knowledge and the evolution strategy, is proposed. To verify the performance of the proposed algorithm, a sonar target PSR estimation is performed. Simulation results show that the proposed algorithm effectively solves the problems in the realtime system application.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network (진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계)

  • Kim, Dae-Jun;Chun, Jong-Min;Jeon, Hyang-Sig;Park, Young-Kiu;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

An Optimal Design of Notch Shape of IPM BLDC Motor Using the Differential Evolution Strategy Algorithm (차분진화 알고리즘을 이용한 IPM형 BLDC전동기의 Notch 형상 최적화 설계 연구)

  • Shin, Pan Seok;Kim, Hong Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a cogging torque of IPM(Interior Permanent Magnet)-type BLDC motor is analyzed by FE program and the optimized notch on the rotor surface is designed to minimize the torque ripple. A differential evolution strategy algorithm and a response surface method are employed to optimize the rotor notch. In order to verify the proposed algorithm, an IPM BLDC motor is used, which is 50 kW, 8 poles, 48 slots and 1200 rpm at the rated speed. Its characteristics of the motor is calculated by FE program and 4 design variables are set on the rotor notch. The initial shape of the notch is like a non-symmetric half-elliptic and it is optimized by the developed algorithm. The cogging torque of the final model is reduced to $1.5[N{\cdot}m]$ from $5.2[N{\cdot}m]$ of the initial, which is about 71 % reduction. Consequently, the proposed algorithm for the cogging torque reduction of IPM-type BLDC motor using the rotor notch design seems to be very useful to a mechanical design for reducing noise and vibration.

An evolution strategy toward digitalized inter-exchange network structure in Seoul Metropolitan area

  • Kim, Jeong-Wook
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.585-592
    • /
    • 1996
  • This paper analyzes the impact of digitalization on networks in Seoul Metropolitan Area by considering facility investment together with operatinng costs. A stepwise evolution method toward a digitalized double-homming architecture is proposed to accommodate most efficiently with existing analog-oriented networks.

  • PDF

Health in All Policies: The Evolution of Health Promotion and Intersectoral Cooperation (모든 정책의 건강: 건강증진과 부문 간 협력의 진화)

  • Jhang, Won Gi
    • Health Policy and Management
    • /
    • v.26 no.1
    • /
    • pp.79-91
    • /
    • 2016
  • 'Health in All Policies' is a new strategy for governance for health in 21st century. The evolution of health promotion has affected the creation of the strategy through the efforts to tackle health inequalities by addressing social determinants of health. More concern about health inequalities, involving wider policy areas, and higher level of institutionalization distinguish the strategy from the old intersectoral collaboration such as intersectoral action for health and healthy public policy. Making intersectoral collaboration the mainstream of policy making is important to address integrated policy agendas such as 'Health in All Policies' and 'Sustainable Development Goals.' Political leadership and interpersonal skills are also required to strengthen the capacity of public health sector for implementing 'Health in All Policies' in local, national, and international circumstances.

우리 나라 중소기업의 전략변화와 기술능력 학습 - 우리나라 전자부품 산업에 대한 사례연구 -

  • 이병헌;김영배
    • Proceedings of the Technology Innovation Conference
    • /
    • 1998.06a
    • /
    • pp.57-90
    • /
    • 1998
  • This study attempts to explore the evolution paths of Korean SMEs'strategies and their technological teaming processes. Several different evolution paths are identified based on a dynamic strategic group analysis of 115 SMEs'strategy in the Korean electronic component industry for the period of 1990-1995. Further, inadept case analyses on technological learning processes in 5 firms are undertaken. Major findings of this study can be summarized as follows : 1) There are three dominant evolution paths in SMEs'strategy. First path indicates the evolution from a subcontractor or petty imitator group(a strategic group with the narrow product/market domain and the low level of accumulated resource/capabilities) into an innovator group(a strategic group with the narrow domain but high level of technological capability) by accumulating technological capabilities. Second, some firms move from a subcontractor group into a generalizer group(a strategic group with broad product/market domain but relatively low level of technological capability) by simply adding product lines. Third path involves firms which evolve from a subcontractor group into a production focus group(a strategic group with high level of production capability) by investing in production capabilities. 2) An in-depth case analysis shows those who succeeded in technological learning are managed by CEOs, who have technological expertise and strategic vision, and have made an effort to establish management practices to support innovation, such employee educational program, performance-based reward system, etc. The successful firms also aggressively pursue diverse external linkages with outside technology sources to learn product and process technologies. Fiendly, this study discusses several implications of the findings for the theoretical development and strategic management of small firms in Korea.

  • PDF

A Study on the Domestic IPv6 Evolution Strategy for Next Generation Internet (차세대 인터넷을 위한 국내 IPv6 진화 방안에 관한 연구)

  • Shin, Myung-Ki;Kim, Yong-Jin;Park, Chee-Hang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11S
    • /
    • pp.3613-3622
    • /
    • 2000
  • This paper presents IPv6 evolution strategies toward Next Generation Internet. We define requirements for IPv6 transition, then propose the IPv6 evolution strategies by considering IPv4/1Pv6 interworking, IPv6 development items with superiority compared to foreign technologies, IPv6 network evolution strategy for operation and management in stages by new Internet site or ISPs. the policy for structure and allocation of production IPv6 addresses, and reinforcement methods of the international activities on IPv6 related areas.

  • PDF

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.