• Title/Summary/Keyword: Evolution rate

Search Result 877, Processing Time 0.025 seconds

Effect of Temperature Change on the Respiration Characteristics of Vegetables

  • Kawagoe, Yoshinori;Seo, Yasuhisa;Oshita, Sei-Ichi;Sagara, Yasuyuki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.947-952
    • /
    • 1996
  • The effect of fluctuating temperature on the respiration of vegetables has been investigated. Spinach was selected as the experimental material because of its high respiratory activity and kept under the condition that temperature changed alternately at low and high levels every 4 hours. The low-high level temperature combination was set in $1-10^{\circ}C,{\;}1-20^{\circ}C{\;}and{\;}1-30^{\circ}C$. Respiration was evaluated in terms of quantity of $CO_2$ evolved from spinach. The evolution rate of $CO_2$ was determined by a change in its concentration. The evaluation rate of $CO_2$ followed closely the temperature change. In the temperature combinations at $1-10^{\circ}C{\;}and{\;}1-20^{\circ}C$, the relationship between $CO_2$ evolution rate and temperature was found to be able to express by Arrhenius law, while at $1-30^{\circ}C$, it did not obey the law.

  • PDF

Life History Traits and the Rate of Molecular Evolution in Galliformes (Aves)

  • Eo, Soo-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • Rates of molecular evolution are known to vary widely among taxonomic groups. A number of studies, examining various taxonomic groups, have indicated that body size is negatively and clutch size is positively correlated with the rates of nucleotide substitutions among vertebrate species. Generally, either smaller body mass or larger clutch size is associated with shorter generation times and higher metabolic rates. However, this generality is subject to ongoing debate, and large-scale comparative studies of species below the Order level are lacking. In this study, phylogenetically independent methods were used to test for relationships between rates of the mitochondrial cytochrome b evolution and a range of life history traits, such as body mass and clutch size in the Order Galliformes. This analysis included data from 67 species of Galliformes birds and 2 outgroup species in Anseriformes. In contrast to previous studies, taxa were limited to within-Order level, not to Class or higher. I found no evidence to support an effect of life history traits on the rate of molecular evolution within the Galliformes. These results suggest that such relationship may be too weak to be observed in comparisons of closely related species or may not be a general pattern that is applicable to all nucleotide sequences or all taxonomic groups.

A Study on Physiological conditions for hydrogen evolution by Rhodopseudomonass phaeroides K-7 (Rhodopseudomonas sphaeroides K-7에 의한 수소생성에 미치는 생리적 조건에 관한 연구)

  • Bae, Moo;Lee, Jeong-Kug
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.109-114
    • /
    • 1983
  • Physiological conditions for hydrogen evolution by Rhodopseudomonas sphaeroides K-7 are examined. Larger amount of molecular hydrogen was evolved at $30^{\circ}C$, pH6.8-7.0 under anaerobically illuminated condition of about 12, 000 lux by the organism. The heighest rates of hydrogen evolution were observed in the culture with the organic acids such as acetate, DL-lactate or DL-malate in media containing L-glutamate as a nitrogen source. Hydrogen was also evolved from glucose with the rate of $178.9\;{\mu}l/hr/mg$ cells (dry weight). When glucose was adopted a a sole carbon source, however, conside erable time lag of about 20hours was required for hydrogen evolution. The resting cells stored at $30^{\circ}C$ under argon maintained the rate of hydrogen evolution in nearly about 90% of initial one even 40 days of storation.

  • PDF

Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션)

  • Song, Young-Sik;Kim, Dae-Wan;Yang, Hoe-Seok;Han, Sung-Ho;Chin, Kwang-Gun;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

Effect of Photosynthesis on Ozone-Induced Ethylent Evolution from Tomato Plants (토마토 식물에 있어서 광합성이 유존유동성의 에틸렌 생성에 미치는 영향)

  • 배공영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.307-314
    • /
    • 1996
  • The rate of evolution of ethylent by tomato plants was rapidly increased by ozone fumigation. In the present study, the mechanism of ethylent evolution by ozone was investigated in experiments with aminoethoxyvinylglycine (AVG) and tiron, which inhibit the formation of ethylene and peroxidation of lipids, respectively. Pretreatment with AVG significantly inhibited the ozone-induced ethylent evolution, but the treatment of plants with tiron did not inhibit. These results indicate that the induction of the evolution of ethylene by ozone involves the pathway via aminocyclopropane-1-carboxylate (ACC), while not released as a result of the peroxidation of lipids. Ozone-induced ethylent evolution was greater in dar- than light-incubated, intact tomato plants. The difference between dark- and light-ethylene evolution was examined with diuron, an inhibitor of photosynthetic electron transport. The inhibitor treatment promoted ethylent evolution. These results suggest that ethylent retention and metabolism in plants were regulated by internal $CO_2$ levels which, in turn, were controlled in large part by photosynthesis. Thus, ethylene was retained in illuminated leaf tissue under low intenal $CO_2$ concentration which may develop in a sealed container without exogenously supplied $CO_2$.

  • PDF

Ethylene Evolution in Tomato Plants by Ozone in Relation to Leaf Injury (토마토 오존처리에 의한 에틸렌 생성과 가시 장해 발현과의 관계)

  • 배공영;이용범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.333-340
    • /
    • 1996
  • The relationship between ozone-induced damages and ethylend evolution was examined in tomato plants fumigated with ozone of 0.2 $\mu\ell/\ell$. The rate of evolution of ethylent by tomato plants was enhanced by ozone fumigation. Pretreatment of leaves with aminoethoxyvinylglycine (AVG), an inhibitor of ethylene evolution, significantly inhibited the evolution of ethylene that was induced by ozone and concomitantly reduced the extent of ozone-induced visible damage to leaves. Treatment with 2,5-norbonadiene (NBD), and inhibitor of the action of ethylene, strongly reduced the extent of visible damage caused by ozone, even though it did not suppress the evolution of ethylene. These results indicated that ethylene might play an important role in ozone-induced plant injuries at relatively short terms of ozone fumigation. Next, we examined the effect of tiron, a scanvenger of the free-radical, on evolution of ethylene and leaf injury caused by ozone. Tiron treatment strongly reduced the extent of ozone-induced injury, but had not inhibitory effect on the evolution of ethylene from tomato leaves. This result suggests the involvement of free-radical, such as superoxide radicals, in induction of injuries caused by ozone.

  • PDF

Effect of heating Rate on the Microstructural Evolution during Sintering of PZT Ceramics (PZT 요업체의 소결과정 중 승온속도가 미세조직에 미치는 영향)

  • 박은태;김정주;조상희;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1020-1026
    • /
    • 1990
  • The effect of heating rate on the microstructural evolution during sintering of PZT ceramics has been investigated. In case of PZT powder compacts containing excess of PbO, fast heating caused incomplete rearrangement of solid grains in a liquid, resulting in lower density and inhomogeneous pore shape ; on contrary, slow heating resulted in better densification. In contrast, in case of compacts without excess PbO, the densification was enhanced by fast heating due to suppression of the grain growth.

  • PDF

A Numerical Study on Radiation-Induced Oscillatory Instability in CH$_4$/Air Diffusion Flames (메탄/공기 확산화염에서 복사 열손실로 인한 맥동 불안정에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • Radiation-induced oscillatory instability in CH$_4$/Air diffusion flames is numerically investigated by adopting detailed chemistry. Counterflow diffusion flame is employed as a model flamelet and optically thin gas-phase radiation is assumed. Attention is focused on the extinction regime induced by radiative heat loss, which occurs at low strain rate. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Depending on the initial strain rate and the amount of perturbed strain rate, transient evolution of the flame exhibits various types of flame-evolution behaviors. Basically, the dynamic behaviors can be classified into two types, namely oscillatory decaying solution and diverging solution leading to extinction.

The Evolution of Dynamically Recrystallized Microstructure for SCM 440 (SCM 440 강재의 동적 재결정 조직 변화에 관한 연구)

  • 한형기;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF