• Title/Summary/Keyword: Evolution of Life

Search Result 754, Processing Time 0.025 seconds

Life History Traits and the Rate of Molecular Evolution in Galliformes (Aves)

  • Eo, Soo-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • Rates of molecular evolution are known to vary widely among taxonomic groups. A number of studies, examining various taxonomic groups, have indicated that body size is negatively and clutch size is positively correlated with the rates of nucleotide substitutions among vertebrate species. Generally, either smaller body mass or larger clutch size is associated with shorter generation times and higher metabolic rates. However, this generality is subject to ongoing debate, and large-scale comparative studies of species below the Order level are lacking. In this study, phylogenetically independent methods were used to test for relationships between rates of the mitochondrial cytochrome b evolution and a range of life history traits, such as body mass and clutch size in the Order Galliformes. This analysis included data from 67 species of Galliformes birds and 2 outgroup species in Anseriformes. In contrast to previous studies, taxa were limited to within-Order level, not to Class or higher. I found no evidence to support an effect of life history traits on the rate of molecular evolution within the Galliformes. These results suggest that such relationship may be too weak to be observed in comparisons of closely related species or may not be a general pattern that is applicable to all nucleotide sequences or all taxonomic groups.

Ecological Evolution of the Spiders (거미류의 생태적 진화에 관한 연구)

  • Kim, Joo-Pil
    • The Korean Journal of Soil Zoology
    • /
    • v.4 no.2
    • /
    • pp.61-68
    • /
    • 1999
  • This study reports evolution of spiders which were introduced 400 million years ago in ecological and evolutional aspects. First ecological aspects: underwater life, life of fallen leaves, the crevice of soil, underground life, life in cavern, wandering life in the surface of the earth and threading life in the air. Second evolutional aspects : a kind of the arachnids and morphological change.

  • PDF

Framework for Innovative Mechanical Design Using Simulated Emergent Evolution (창발적 기계설계를 위한 컴퓨터기반 프레임워크)

  • Lee, In-Ho;Cha, Ju-Heon;Kim, Jae-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.701-710
    • /
    • 2002
  • The framework, described in this paper, involves artificial evolutionary systems that re -produce aimed solutions through a simulated Darwinian evolution process. Through this process the framework designs structures of machines innovatively and emergently especially in the stages of conceptual and basic design. Since the framework simulates the evolution of nature, it inevitably involves processes that converse the natural evolution to the artificial evolution. For the conversion, based on several methods as the building block modeling, Artificial Life, evolutionary computation and the law of natural selection, we propose a series of processes that consists of modeling, evaluation, selection, evolution etc. We have demonstrated the implementation of the framework with the design of multi-step gear systems.

Hydrogen Evolution by Photosynthetic Bacteria Rhodobacter sphaeroides KS56 (광합성 세균 Rhodobacter sphaeroidea KS56에 의한 수소 생성)

  • 이은숙;권애란
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.3
    • /
    • pp.325-329
    • /
    • 1997
  • The optimum temperature and pH for growth and hydrogen evolution of the organism were observed at 30-35$^{\circ}C$, and around pH 7.0, respectively. The efficiency of various sugars and organic acids on hydrogen evolution as electron donors by the organism was examined. Among them, higher rates of hydrogen evolution were observed with sugars such as glucose or fructose and organic acids such as alate or pyruvate. From the result, it was evident that Rhodobacter sphaeroides KS56 had a great capacity of utilizing various kinds of reduced carbon compounds as electron donors.

  • PDF

High-energy Photons and Particles in Space Environment

  • Ohno, Shin-ichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.170-173
    • /
    • 2002
  • Space is full of energetic events emitting high-energy radiations which may be fatal to all living things unless protected. The present paper briefly describes high-energy photons and particles incident on Earth surface and their common properties toward living things. Role of radiation played in evolution of life and earth environment will be presented.

  • PDF

Genealogical Diversity of Endogenous Retrovirus in the Jawless Fish Genome

  • Song Jing;Wei Jie;Ma Yongping;Sun Yan;Li Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1412-1419
    • /
    • 2023
  • Retroviral integration into ancient vertebrate genomes left traces that can shed light on the early history of viruses. In this study, we explored the early evolution of retroviruses by isolating nine Spuma endogenous retroviruses (ERVs) and one Epsilon ERV from the genomes of Agnatha and Chondrichthyes. Phylogenetic analysis of protein sequences revealed a striking pattern of co-evolution between jawless fish ERV and their host, while shark ERV underwent ancient cross-class viral transmission with jawless fish, ray-finned fish, and amphibians. Nucleotide sequence analysis showed that jawless fish ERV emerged in the Palaeozoic period, relatively later than ray-finned fish ERV. Moreover, codon analysis suggested that the jawless fish ERV employed an infection strategy that mimics the host codon. The genealogical diversity of ERVs in the jawless fish genome highlights the importance of studying different viral species. Overall, our findings provide valuable insights into the evolution of retroviruses and their interactions with their hosts.

CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution

  • Rahul Mahadev Shelake;Dibyajyoti Pramanik;Jae-Yean Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Directed evolution (DE) of desired locus by targeted random mutagenesis (TRM) tools is a powerful approach for generating genetic variations with novel or improved functions, particularly in complex genomes. TRM-based DE involves developing a mutant library of targeted DNA sequences and screening the variants for the desired properties. However, DE methods have for a long time been confined to bacteria and yeasts. Lately, CRISPR/Cas and DNA deaminase-based tools that circumvent enduring barriers such as longer life cycle, small library sizes, and low mutation rates have been developed to facilitate DE in native genetic environments of multicellular organisms. Notably, deaminase-based base editing-TRM (BE-TRM) tools have greatly expanded the scope and efficiency of DE schemes by enabling base substitutions and randomization of targeted DNA sequences. BE-TRM tools provide a robust platform for the continuous molecular evolution of desired proteins, metabolic pathway engineering, creation of a mutant library of desired locus to evolve novel functions, and other applications, such as predicting mutants conferring antibiotic resistance. This review provides timely updates on the recent advances in BE-TRM tools for DE, their applications in biology, and future directions for further improvements.

The Effect of Fretting Wear on Fatigue Life of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로수명에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1083-1092
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile caused by fretting wear on fatigue life of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact profiles of shaft. The fatigue lives of the press-fitted shaft reflecting the evolution of contact stress induced by fretting wear were evaluated by stress-life approach using fatigue notch factor. It is found that the stress concentration of contact edge in press-fitted shaft decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside with increasing number of fatigue cycles. Thus the change of crack nucleation position in press-fitted shaft is mainly caused by the stress change of contact edge due to the evolution of contact surface profile by fretting wear. Furthermore, the estimated fatigue lives by stress-life approach at the end of running-in period of the fretting wear process corresponded well to the experimental results. It is thus suggested that the effect of fretting wear on fatigue life in press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

The Limit of Gene-Culture Co-evolutionary Theory

  • Lee, Min-seop;Jang, Dayk
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.3
    • /
    • pp.173-191
    • /
    • 2017
  • The theories of cultural evolution hold subtly or clearly different stances about definition of culture, pattern of cultural evolution, biases that affect cultural evolution, and relationship between culture and organism. However, the cultural evolution theories have a common problem to solve: As the evolutionary theory of life tries to explain the early steps and the origin of life, the cultural evolution theories also must explain the early steps of the cultural evolution and the role of the human capability that makes cultural evolution possible. Therefore, explanations of the human's unique traits including the cultural ability are related to determine which one is the most plausible among many cultural evolution theories. Theories that tried to explain human uniqueness commonly depict the coevolution of gene (organism) and culture. We will explicitly call the niche construction theory and the dual inheritance theory the 'gene-culture co-evolutionary theory'. In these theories, the most important concept is the 'concept of positive feedback'. In this paper, we distinguish between core positive feedback and marginal positive feedback, according to whether the trait that the concept of positive feedback explains is the trait of human uniqueness. Both types of positive feedback effectively explain the generality of human uniqueness and the diversity of human traits driven by cultural groups. However, this positive feedback requires an end, in contrast to negative feedback which can be continued in order to maintain homeostasis. We argue that the co-evolutionary process in the gene-culture co-evolutionary theories include only the positive feedback, not covering the cultural evolution after the positive feedback. This thesis strives to define the coevolution concept more comprehensively by suggesting the potential relationships between gene and culture after the positive feedback.

Genomic Sequence Analysis and Organization of BmKαTx11 and BmKαTx15 from Buthus martensii Karsch: Molecular Evolution of α-toxin genes

  • Xu, Xiuling;Cao, Zhijian;Sheng, Jiqun;Wu, Wenlan;Luo, Feng;Sha, Yonggang;Mao, Xin;Liu, Hui;Jiang, Dahe;Li, Wenxin
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • Based on the reported cDNA sequences of $BmK{\alpha}Txs$, the genes encoding toxin $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$ were amplified by PCR from the Chinese scorpion Buthus martensii Karsch genomic DNA employing synthetic oligonucleotides. Sequences analysis of nucleotide showed that an intron about 500 bp length interrupts signal peptide coding regions of $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$. Using cDNA sequence of $BmK{\alpha}Tx11$ as probe, southern hybridization of BmK genome total DNA was performed. The result indicates that $BmK{\alpha}Tx11$ is multicopy genes or belongs to multiple gene family with high homology genes. The similarity of $BmK{\alpha}$-toxin gene sequences and southern hybridization revealed the evolution trace of $BmK{\alpha}$-toxins: $BmK{\alpha}$-toxin genes evolve from a common progenitor, and the genes diversity is associated with a process of locus duplication and gene divergence.