• Title/Summary/Keyword: Evolution cycle

Search Result 189, Processing Time 0.029 seconds

The Korean State and Candlelight Democracy: Paradigms and Evolution

  • Bedeski, Robert
    • Journal of Contemporary Eastern Asia
    • /
    • v.16 no.2
    • /
    • pp.82-92
    • /
    • 2017
  • The Korean state evolved as a distinct entity in a region of major power convergence and conflict. All states, as human constructions, seek sovereignty and life security of their subjects/citizens, and are rotted in organic society. In the Republic of Korea, constitutional order has provided a framework for political action and a succession of regimes - authoritarianism, military dictatorship, and constitutional democracy. Since 1960 two paradigms have undergone a cycle of growth and decline, and a third, since the 2016 candlelight demonstrations in Gwanghwamun, may be the beginnning of a third generation paradigm - populist constitutionalism.

Current trends in force/torque sensing

  • Morris, Keith-A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.606-608
    • /
    • 1989
  • Force/torque sensors are now providing widespread practical solutions to manufacturing problems, particularly in the area of automated assembly. The current state of the industry is discussed, including the evolution of transducer and controller design, and the trend of robot manufacturers to integrate force/torque sensors into their robot systems thereby greatly improving cycle time and simplifying the application development task for the end-user. Current and future application areas are discussed as well as the benefits of force/torque sensing.

  • PDF

Evolution Characteristics and Drivers of Gumi National Industrial Complex (구미국가산업단지의 진화 과정의 특성과 그 동인)

  • Jeon, Ji-Hye;Lee, Chul-Woo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.303-320
    • /
    • 2018
  • This study analyzes the characteristics of the evolution process of the Gumi National Industrial Complex as well as its external and internal drivers based on the cluster adaptation cycle model. The Gumi National Industrial Complex has made remarkable progress through expansion in spatial and industrial realm and has become a representative IT industry cluster in Korea. It evolved during a growth period from the 1990s, a maturity period from the mid-2000s, and a mature stagnation period from the mid-2010s. But it has now entered a period of decline. While external drivers at the international and national level greatly influenced the Gumi National Industrial Complex in its evolution from foundation-building to maturity, internal drivers such as the outflow of large firms as well as a lack of SME research capacity and institutional base have added to the management difficulties of SMEs in the mature stagnation period. Therefore, in order for the Gumi National Industrial Complex to move into a revitalization period that strengthens resilience against external shocks, it is necessary to enhance the capacity of SMEs by expanding the roles of the central government, local government, and support agencies. In addition, it is necessary to create and embed strong medium enterprises within the Gumi National Industrial Complex, so that the Complex can be reborn as a sustainable innovation ecosystem.

Studies on the Cycle of the Seminiferous Epithelium in Korean Native Cattle (한우의 세정관상피주기에 관한 연구)

  • 한방근;임정택;이재홍;김우권
    • Korean Journal of Animal Reproduction
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1987
  • The cycle of the seminiferous epthelia in the testis of matured Korean Native Cattle was divided into eight stages. The results were summarized as follows: 1. Type A spermatogonia a, pp.ared twice as many at stage 2 as compared to stage 1, while maximum numbers were the average of 2.8 at stage 2. The intermediate and Type B spermatogonia were found during the stage 3 to 8, stage 6 to 8, respectively. The leptolene primary spermatocytes were not observed during the stage 5 to 7, while the pachytene primary spermatocytes were shown the least in number at stage 4, the secondary supermatocytes could be seen only at stage 4 and the round spermatids were not observed at stage 3, 4. 2. The relative frequencies of the eight stages of the cycle of the seminiferous eptithelia were 24.9, 14.2, 19.0, 6.3, 3.7, 7.9, 10.3 and 13.9%, respectively. 3. Some of the nuclei of Sertoli cells transformed from the "parallel" type to the "perpendicular" type. This evolution took place from stage 1 to 5, when the number of "perpendicular" type nuclei reached a peak and the number was decreased in the rest of the stages.sed in the rest of the stages.

  • PDF

Statistical Analysis of Pc1 Pulsations Observed by a BOH Magnetometer

  • Kim, Jiwoo;Hwang, Junga;Kim, Hyangpyo;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Pc1 pulsations are important to consider for the interpretation of wave-particle interactions in the Earth's magnetosphere. In fact, the wave properties of these pulsations change dynamically when they propagate from the source region in the space to the ground. A detailed study of the wave features can help understanding their time evolution mechanisms. In this study, we statistically analyzed Pc1 pulsations observed by a Bohyunsan (BOH) magneto-impedance (MI) sensor located in Korea (L = 1.3) for ~one solar cycle (November 2009-August 2018). In particular, we investigated the temporal occurrence ratio of Pc1 pulsations (considering seasonal, diurnal, and annual variations in the solar cycle), their wave properties (e.g., duration, peak frequency, and bandwidth), and their relationship with geomagnetic activities by considering the Kp and Dst indices in correspondence of the Pc1 pulsation events. We found that the Pc1 waves frequently occurred in March in the dawn (1-3 magnetic local time (MLT)) sector, during the declining phase of the solar cycle. They generally continued for 2-5 minutes, reaching a peak frequency of ~0.9 Hz. Finally, most of the pulsations have strong dependence on the geomagnetic storm and observed during the early recovery phase of the geomagnetic storm.

THE PREDICTION OF SOLAR ACTIVITY FOR SOLAR MAXIMUM (태양활동극대기를 대비한 태양활동예보)

  • LEE JINNY;JANG SE JIN;KIM YEON HAN;KIM KAP-SUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.103-112
    • /
    • 1999
  • We have investigated the solar activity variation with period shorter than 1000 days, through Fourier transformation of solar cycle 21 and 22 data. And real time predictions of the flare maximum intensity have been made by multilinear regression method to allow the use of multivariate vectors of sunspot groups or active region characteristics. In addition, we have examined the evolution of magnetic field and current density in active regions at times before and after flare occurrence, to check short term variability of solar activity. According to our results of calculation, solar activity changes with periods of 27.1, 28.0, 52.1, 156.3, 333.3 days for solar cycle 21 and of 26.5, 27.1, 28.9, 54.1, 154, 176.7, 384.6 days for solar cycle 22. Periodic components of about 27, 28, 53, 155 days are found simultaneously at all of two solar cycles. Finally, from our intensive analysis of solar activity data for three different terms of $1977\~1982,\; 1975\~1998,\;and\;1978\~1982$, we find out that our predictions coincide with observations at hit rate of $76\%,\;63\%$, 59 respectively.

  • PDF

3-D Imaging in a Chaotic Micromixer Using Confocal Laser Scanning Microscopy (CLSM) (공초점 현미경을 이용한 마이크로믹서 내부의 3차원 이미지화)

  • Kim, Hyun-Dong;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.96-101
    • /
    • 2006
  • 3-D visualization using confocal laser scanning microscopy (CLSM) in a chaotic micromixer was performed as a reproduction experiment and the feasibility of 3-0 imaging technique in the microscale was confirmed. For diagonal micromixer (DM) and two types of staggered herringbone micromixers (SHM) designed by Whitesides et al., to verify the evolution of mixing, cross sectional images are reconstructed at the end of every cycle. In a DM, clockwise rotational flow motion generated by diagonal ridges placed on the floor of micromixer is observed and this motion makes the fluid commingle. On the contrary, there are two rotational flow structures in the SHM and the centers of rotation exchange their position each other every half cycle because of the V shape of ridges varying their orientation every half cycle. Local rotational flow and local extensional flow generated by the complicate ridge pattern make the flow be chaotic and accelerate the mixing of fluid. The dominant parameter that influences on the mixing characteristic of SHM is not the length of micromixer but the number of ridges under the same flow configurations.

  • PDF

SUNSHINE, EARTHSHINE AND CLIMATE CHANGE I. ORIGIN OF, AND LIMITS ON SOLAR VARIABILITY

  • GOODE PHILIP R.;DZIEMBOWSKI W. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.75-81
    • /
    • 2003
  • Changes in the earth's climate depend on changes in the net sunlight reaching us. The net depends on the sun's output and earth's reflectance, or albedo. Here we develop the limits on the changes in the sun's output in historical times based on the physics of the origin of solar cycle changes. Many have suggested that the sun's output could have been $0.5\%$ less during the Maunder minimum, whereas the variation over the solar cycle is only about $0.1\%$. The frequencies of solar oscillations (f- and p-modes) evolve through the solar cycle, and provide the most exact measure of the cycle-dependent changes in the sun. But precisely what are they probing? The changes in the sun's output, structure and oscillation frequencies are driven by some combination of changes in the magnetic field, thermal structure and velocity field. It has been unclear what is the precise combination of the three. One way or another, this thorny issue rests on an understanding of the response of the solar structure to increased magnetic field, but this is complicated. Thus, we do not understand the origin of the sun's irradiance increase with increasing magnetic activity. Until recently, it seemed that an unphysically large magnetic field change was required to account for the frequency evolution during the cycle. However, the problem seems to have been solved (Dziembowski, Goode & Schou 2001) using f-mode data on size variations of the sun. From this and the work of Dziembowski & Goode (2003), we suggest that in historical times the sun couldn't be much dimmer than it is at activity minimum.

Ecosystem Configuration and its Structure of Cultural Contents (생태계 관점에서의 문화콘텐츠 산업 구성 및 구조)

  • Yoo, Jun-Ho;Yoon, Seung-Keum
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.327-339
    • /
    • 2010
  • The cultural contents are a field that originally has a cycle ranged from producers of various contents and distribution consumption. The various object elements composing of an ecosystem of cultural contents in this cycle, and the search of harmonious relations between these objects is becoming an important issue. The ecological approach on the cultural contents field is not being tried authentically until now, in spite of the expansion of interest and usefulness from its application at present, so there is no detailed discussion on the inside of an ecosystem and its action such as confirmation of object elements composing of the ecosystem, interaction principles between objects and object development, principles of co-evolution, etc. achieving common development of all objects composing of the ecosystem. Therefore, the present research aims to confirm object elements composing of the ecosystem of cultural contents through an ecosystem model that has been researched in several fields of the ecosystem and social science, and to seek interaction between objects and each object as well as a development direction of a total ecosystem.

Microstructural Evolution with Annealing of Ultralow Carbon IF Steel Severely Deformed by Six-Layer Stack ARB Process (6층겹침ARB공정에 의해 강소성가공된 극저탄소IF강의 어닐링에 따른 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.403-408
    • /
    • 2012
  • A sample of ultra low carbon IF steel was processed by six-layer stack accumulative roll-bonding (ARB) and annealed. The ARB was conducted at ambient temperature after deforming the as-received material to a thickness of 0.5 mm by 50% cold rolling. The ARB was performed for a six-layer stacked, i.e. a 3 mm thick sheet, up to 3 cycles (an equivalent strain of ~7.0). In each ARB cycle, the stacked sheets were, first, deformed to 1.5 mm thickness by 50% rolling and then reduced to 0.5 mm thickness, as the starting thickness, by multi-pass rolling without lubrication. The specimen after 3 cycles was then annealed for 0.5 h at various temperatures ranging from 673 to 973 K. The microstructural evolution with the annealing temperature for the 3-cycle ARB processed IF steel was investigated in detail by transmission electron microscopy observation. The ARB processed IF steel exhibited mainly a dislocation cell lamella structure with relatively high dislocation density in which the subgrains were partially observed. The selected area diffraction (SAD) patterns suggested that the misorientation between neighboring cells or subgrains was very small. The thickness of the grains increased in a gradual way up to 873 K, but above 898 K it increased drastically. As a result, the grains came to have an equiaxed morphology at 898 K, in which the width and the thickness of the grains were almost identical. The grain growth occurred actively at temperatures above 923 K.