• Title/Summary/Keyword: Evolution Computation

Search Result 113, Processing Time 0.034 seconds

Framework for Innovative Mechanical Design Using Simulated Emergent Evolution (창발적 기계설계를 위한 컴퓨터기반 프레임워크)

  • Lee, In-Ho;Cha, Ju-Heon;Kim, Jae-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.701-710
    • /
    • 2002
  • The framework, described in this paper, involves artificial evolutionary systems that re -produce aimed solutions through a simulated Darwinian evolution process. Through this process the framework designs structures of machines innovatively and emergently especially in the stages of conceptual and basic design. Since the framework simulates the evolution of nature, it inevitably involves processes that converse the natural evolution to the artificial evolution. For the conversion, based on several methods as the building block modeling, Artificial Life, evolutionary computation and the law of natural selection, we propose a series of processes that consists of modeling, evaluation, selection, evolution etc. We have demonstrated the implementation of the framework with the design of multi-step gear systems.

Hardness prediction based on microstructure evolution and residual stress evaluation during high tensile thick plate butt welding

  • Zhou, Hong;Zhang, Qingya;Yi, Bin;Wang, Jiangchao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.146-156
    • /
    • 2020
  • Two High Tensile Strength Steel (EH47) plates with thickness of 70 mm were butt-welded together by multi-pass Submerged Arc Welding (SAW), also the hardness and welding residual stress were investigated experimentally. Based on Thermal-Elastic-Plastic Finite Element (TEP FE) computation, the thermal cycles during entire welding process were obtained, and the HAZ hardness of multi-pass butt welded joint was computed by the hardenability algorithm with considering microstructure evolution. Good agreement of HAZ hardness between the measurement and computational result is observed. The evolution of each phase was drawn to clarify the influence mechanism of thermal cycle on HAZ hardness. Welding residual stress was predicted with considering mechanical response, which was dominantly determined by last cap welds through analyzing its formation process.

A Study on Evolutionary Computation of Fractal Image Compression (프랙탈 영상 압축의 진화적인 계산에 관한 연구)

  • Yoo, Hwan-Young;Choi, Bong-Han
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.365-372
    • /
    • 2000
  • he paper introduces evolutionary computing to Fractal Image Compression(FIC). In Fractal Image Compression(FIC) a partitioning of the image into ranges is required. As a solution to this problem there is a propose that evolution computation should be applied in image partitionings. Here ranges are connected sets of small square image blocks. Populations consist of $N_p$ configurations, each of which is a partitioning with a fractal code. In the evolution each configuration produces $\sigma$ children who inherit their parent partitionings except for two random neighboring ranges which are merged. From the offspring the best ones are selected for the next generation population based on a fitness criterion Collage Theorem. As the optimum image includes duplication in image data, it gets smaller in saving space more efficient in speed and more capable in image quality than any other technique in which other coding is used. Fractal Image Compression(FIC) using evolution computation in multimedia image processing applies to such fields as recovery of image and animation which needs a high-quality image and a high image-compression ratio.

  • PDF

Evolutionary computation approach for automated synthesis design of mechanical structures (기계 구조의 합성적 자동생성을 위한 진화연산)

  • 이인호;차주헌;김재정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.643-646
    • /
    • 2002
  • This paper proposes an evolutionary computation approach for automated design of mechanical structures especially in its early stage of design phases. Due to the known characteristics of the stage, the approach basically involves a synthetic design method with the composition of building blocks representing the elements of mechanical objects. In order for the building blocks to be more suitable for representation and evolution of mechanical structures, Elementary Cell Blocks (ECBs) are introduced as new building blocks. A new Darwinian evolution process for the new building blocks is also necessarily involved in the approach. We have demonstrated the implementation of the approach with the design of multi-step gear systems.

  • PDF

Comparison of Evolutionary Computation for Power Flow Control in Power Systems (전력계통의 전력조류제어를 위한 진화연산의 비교)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an unified method which solves real and reactive power dispatch problems for the economic operation of power systems using evolutionary computation such as genetic algorithms(GA), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most of these approaches have the common defect of being caught to a local minimum solution. The proposed methods, applied to the IEEE 30-bus system, were run for 10 other exogenous parameters and composed of P-optimization module and Q-optimization module. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

A Study on the Application of Biomorphism on Contemporary Architectural Design (현대 건축 디자인에서의 생물학적 형태의 적용에 관한 연구)

  • Kim Won-Gaff
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.1 s.54
    • /
    • pp.30-38
    • /
    • 2006
  • The new aspect of contemporary architectural design is the computer simulation of morphogenesis and evolution of the organic body. Morphogenesis and evolution is the kind of emergence that is the process of complex pattern formation from simpler rules in complex system. The development comprises the sequence of pattern formation, differentiation, morphogenesis, growth. This study analyzes the application methodology of various biomorphism in contemporary architecture. The methods of generative application by computation in architecture are self-organization, differentiation, growth algorithm via MoSS. And the methods of evolution by computation are genetic algorithm, multi-parameter in environments, phylogenetic cross-over, competing as natural selection, mutation+external constraints, generative algorithm+genetic algorithm via Genr8.

Implementation of an Adaptive Genetic Algorithm Processor for Evolvable Hardware (진화 시스템을 위한 유전자 알고리즘 프로세서의 구현)

  • 정석우;김현식;김동순;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.265-276
    • /
    • 2004
  • Genetic Algorithm(GA), that is shown stable performance to find an optimal solution, has been used as a method of solving large-scaled optimization problems with complex constraints in various applications. Since it takes so much time to execute a long computation process for iterative evolution and adaptation. In this paper, a hardware-based adaptive GA was proposed to reduce the serious computation time of the evolutionary process and to improve the accuracy of convergence to optimal solution. The proposed GA, based on steady-state model among continuos generation model, performs an adaptive mutation process with consideration of the evolution flow and the population diversity. The drawback of the GA, premature convergence, was solved by the proposed adaptation. The Performance improvement of convergence accuracy for some kinds of problem and condition reached to 5-100% with equivalent convergence speed to high-speed algorithm. The proposed adaptive GAP(Genetic Algorithm Processor) was implemented on FPGA device Xilinx XCV2000E of EHW board for face recognition.

A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation (적응진화연산을 이용한 퍼지-전력계통안정화장치 설계)

  • Hwang, Gi-Hyun;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF

Cooperative Coevolution Differential Evolution Based on Spark for Large-Scale Optimization Problems

  • Tan, Xujie;Lee, Hyun-Ae;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Differential evolution is an efficient algorithm for solving continuous optimization problems. However, its performance deteriorates rapidly, and the runtime increases exponentially when differential evolution is applied for solving large-scale optimization problems. Hence, a novel cooperative coevolution differential evolution based on Spark (known as SparkDECC) is proposed. The divide-and-conquer strategy is used in SparkDECC. First, the large-scale problem is decomposed into several low-dimensional subproblems using the random grouping strategy. Subsequently, each subproblem can be addressed in a parallel manner by exploiting the parallel computation capability of the resilient distributed datasets model in Spark. Finally, the optimal solution of the entire problem is obtained using the cooperation mechanism. The experimental results on 13 high-benchmark functions show that the new algorithm performs well in terms of speedup and scalability. The effectiveness and applicability of the proposed algorithm are verified.

Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution (입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.549-557
    • /
    • 2014
  • Recently, analysis of bargaining game using evolutionary computation is essential issues in field of game theory. In this paper, we observe a bargaining game using co-evolution between two heterogenous artificial agents. In oder to model two artificial agents, we use a particle swarm optimization and a differential evolution. We investigate algorithm parameters for the best performance and observe that which strategy is better in the bargaining game under the co-evolution between two heterogenous artificial agents. Experimental simulation results show that particle swarm optimization outperforms differential evolution in the bargaining game.