• Title/Summary/Keyword: Evoked Response

Search Result 250, Processing Time 0.024 seconds

Development of 3D cochlear model to evaluate ECAP (ECAP 평가를 위한 3차원 달팽이관 모델 개발)

  • Kang, Soojin;Woo, Jihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.287-293
    • /
    • 2013
  • Cochlear implant (CI) is an auditory prosthesis that delivers electrical stimulation via inserted electrodes into a cochlea. To evaluate CI performance, it is important to understand how auditory nerves are responded to electrical stimulations. In clinic, electrically evoked compound action potential (ECAP) is measured. In this study, we developed 3D finite element (FE) cochlear model to simulate ECAP in response to electrical stimulation. The model prododuced ECAP similar to that measured in animal experiments and clinics. This 3D FE cochlear model could be used in electrical stimulus method study to improve CI by analyzing neural responses to electrical stimulations.

Evaluation for the Effects of Intrathecal Sildenafil on the Formalin- and Thermal-induced Nocieption of Rats (쥐를 이용한 포르말린 및 열 유발 통증에서 척수강 Sildenafil의 효과에 관한 연구)

  • Yoon, Myung Ha;Bae, Hong Buem;Shin, Dong Jin;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2006
  • Background: Cyclic guanosine monophosphate (cGMP) plays an important role in the modulation of nociception. Although local sildenafil produces antinociception, by increasing cGMP through the inhibition of phosphodiesterase 5, the effect of spinal sildenafil has not been determined. The authors evaluated the effects of intrathecal sildenafil on the nociceptive behavior evoked by formalin injection and thermal stimulation. Methods: Lumbar intrathecal catheters were implanted into rats, with formalin and Hot-Box tests used as nociceptive models. The formalin-induced nociceptive behavior (flinching response) and withdrawal latency to radiant heat were measured, and the general behaviors also observed. Results: The intrathecal administration of sildenafil produced dose-dependent suppression of the flinches in both phases in the formalin test, and increased the withdrawal latency in the Hot-Box test. No abnormal behaviors were noted. Conclusions: Sildenafil, an inhibitor of phosphodiesterase 5, is active against the nociceptive state evoked in the spinal cord by formalin and thermal stimulations. Accordingly, spinal sildenafil may be useful in the management of pain.

Comparision of Regulatory Action of cAMP and cGMP on the Activation of Neutrophil Responses

  • Han, Chang-Hwang;Yoon, Young-Chul;Shin, Yong-Kyoo;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • The regulatory role of cyclic nucleotides in the expression of neutrophil responses has been examined. fMLP-stimulated superoxide production in neutrophils was inhibited by dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP), histamine, adenosine + theophylline, cAMP elevating agents, and 8-bromoguanosine 3' ,5' -cyclic monophosphate (8-BrcGMP) and sodium nitroprusside, cGMP elevating agents. Staurosporine, a protein kinase C inhibitor, genistein, a protein tyrosine kinase inhibitor and chlorpromazine, a calmodulin inhibitor, inhibited superoxide production by fMLP, but they did not further affect the action of DBcAMP on the stimulatory action of fMLP. DBcAMP, histamine, adenosine+theophylline and genistein inhibited myeloperoxidease release evoked by fMLP, whereas BrcGMP, sodium nitroprusside and staurosporine did not affect it. The elevation of $[Ca^{2+}]_i$ evoked by fMLP was inhibited by genistein and chlorpromazine but was not affected by staurosporine. DBcAMP exerted little effect on the initial peak in $[Ca^{2+}]_i$ response to fMLP but effectively inhibited the sustained rise. On the other hand, BrcGMP significantly inhibited both phases. fMLP-induced $Mn^{2+}$ influx was inhibited by either DBcAMP or BrcGMP. These results suggest that fMLP-stimulated neutrophil responses may be regulated by cAMP more than cGMP. cAMP and cGMP appear not affect stimulated responses by direct protein kinase C activation. Their regulatory action on the stimulated neutrophil responses may be not influenced by other activation processes.

  • PDF

Electrophysiological and Behavioral Changes by Phosphodiesterase 4 Inhibitor in a Rat Model of Alcoholic Neuropathy

  • Han, Kyoung-Hee;Kim, Sung-Hoon;Jeong, In-Cheol;Lee, Young-Hee;Chang, Sei-Jin;Park, Bit-Na-Ri;Kim, Seok-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • Objective : Alcoholic neuropathy is characterized by allodynia (a discomfort evoked by normally innocuous stimuli), hyperalgesia (an exaggerated pain in response to painful stimuli) and spontaneous burning pain. The aim of the present study is to investigate the effect of rolipram, a phosphodiesterase 4 inhibitor, against alcohol-induced neuropathy in rats. Methods : Allodynia was induced by administering 35% v/v ethanol (10 g/kg; oral gavage) to Spraue-Dawley rats for 8 weeks. Rolipram and saline (vehicle) were administered intraperitoneally. Mechanical allodynia was measured by using von Frey filaments. Somatosensory evoked potential (SEP) was proposed as complementary measure to assess the integrity of nerve pathway. Results : The ethanol-induced mechanical allodynia began to manifest from 3 week, and then peaked within 1 week. Beginning from 3 week, latency significantly started to increased in control group. In rolipram treated rats, the shorter latency was sustained until 8 weeks (p<0.05). The mechanical allodynia, which began to manifest on the 3 weeks, intraperitoneal injections of rolipram sustained statistical difference until 8 weeks, the final week of the study (p<0.05). Conclusion : This study suggests that rolipram might alleviate mechanical allodynia induced by alcohol in rats, which clearly has clinical implication.

Roles of Serotonergic and Adrenergic Receptors in the Antinociception of Selective Cyclooxygenase-2 Inhibitor in the Rat Spinal Cord

  • Jeong, Hye-Jin;Lee, Seong-Heon;Cho, Soo-Young;Lee, Cha-Sup;Jeong, Cheol-Won;Yoon, Myung-Ha;Kim, Woong-Mo
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.179-184
    • /
    • 2011
  • Background: The analgesic mechanisms of cyclooxygenase (COX)-2 inhibitors have been explained mainly on the basis of the inhibition of prostaglandin biosynthesis. However, several lines of evidence suggest that their analgesic effects are mediated through serotonergic or adrenergic transmissions. We investigated the roles of these neurotransmitters in the antinociception of a selective COX-2 inhibitor at the spinal level. Methods: DUP-697, a selective COX-2 inhibitor, was delivered through an intrathecal catheter to male Sprague-Dawley rats to examine its effect on the flinching responses evoked by formalin injection into the hindpaw. Subsequently, the effects of intrathecal pretreatment with dihydroergocristine, prazosin, and yohimbine, which are serotonergic, ${\alpha}1$ adrenergic and ${\alpha}2$ adrenergic receptor antagonists, respectively, on the analgesia induced by DUP-697 were assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2. But, intrathecal dihydroergocristine, prazosin, and yohimbine had little effect on the antinociception of intrathecal DUP-697 during both phases of the formalin test. Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. Either the serotonergic or adrenergic transmissions might not be involved in the analgesic activity of COX-2 inhibitors at the spinal level.

The Role of Opioid Receptor on the Analgesic Action of Intrathecal Sildenafil in Rats (백서의 척수강 내로 투여한 Sildenafil의 진통효과에 대한 Opioid 수용체 역할에 관한 연구)

  • Lee, Hyung Gon;Jeong, Chang Young;Yoon, Myung Ha;Kim, Woong Mo;Shin, Seung Heon;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • Background: Intrathecal sildenafil has produced antinociception by increasing the cGMP through inhibition of phosphodiesterase 5. Spinal opioid receptor has been reported to be involved in the modulation of nociceptive transmission. The aim of this study was to examine the role of opioid receptor in the effect of sildenafil on the nociception evoked by formalin injection. Methods: Rats were implanted with lumbar intrathecal catheters. Formalin testing was used as a nociceptive model. Formalin-induced nociceptive behavior (flinching response) was observed. To clarify the role of the opioid receptor for the analgesic action of sildenafil, naloxone was administered intrathecally 10 min before sildenafil delivery, and formalin was then injected 10 min later. Results: Intrathecal sildenafil produced dose-dependent suppression of flinches in both phases during the formalin test. Intrathecal naloxone reversed the analgesic effect of sildenafil in both phases. Conclusions: Sildenafil is active against the nociceptive state that's evoked by a formalin stimulus, and the opioid receptor is involved in the analgesic action of sildenafil at thespinal level.

Can Narrow Band Chirp Stimulus Shake the Throne of 500 Hz Tone Burst Stimulus for Cervical Vestibular Myogenic Potentials?

  • Ocal, F Ceyda Akin;Karacayli, Ceren;Coban, Volkan Kenan;Satar, Bulent
    • Journal of Audiology & Otology
    • /
    • v.25 no.2
    • /
    • pp.98-103
    • /
    • 2021
  • Background and Objectives: The aim of the study was to compare effects of tone-burst (TB) and narrow-band (NB) Claus Elberling (CE)-chirp stimuli on amplitude, latency and interaural asymmetry ratio (IAR) of cervical vestibular evoked myogenic potentials (cVEMP) in healthy individuals. Subjects and Methods: The study included 50 healthy volunteers. cVEMP procedure was carried out using 500 Hz TB and NB-CE-chirp stimulus (360-720 Hz, up-chirp) in random order. cVEMP were recorded at 100 dB nHL. For each ear and each stimulus, P1 latency, N1 latency and P1N1 amplitude were measured. IAR was also calculated. Results: Mean age was 26.66±9.48 years. cVEMP's in response to both TB and NB CE-chirp stimuli were obtained in all subjects. No statistically significant difference in P1 latency, N1 latency, and P1N1 amplitude was found between the right and left ears for both TB and NB CE-chirp stimuli (p>0.05). In both sides, P1 and N1 latencies were significantly shorter in NB CE-chirp stimulation compared to TB stimulation (p=0.000). In both sides, no statistically significant difference was found in P1N1 amplitude between two types of stimuli (p>0.05). Conclusions: The chirp stimulus produces robust but earlier cVEMP than TB does. This largest series study on NB chirp cVEMP shows that NB chirp is a good and new reliable alternative.

Can Narrow Band Chirp Stimulus Shake the Throne of 500 Hz Tone Burst Stimulus for Cervical Vestibular Myogenic Potentials?

  • Ocal, F Ceyda Akin;Karacayli, Ceren;Coban, Volkan Kenan;Satar, Bulent
    • Korean Journal of Audiology
    • /
    • v.25 no.2
    • /
    • pp.98-103
    • /
    • 2021
  • Background and Objectives: The aim of the study was to compare effects of tone-burst (TB) and narrow-band (NB) Claus Elberling (CE)-chirp stimuli on amplitude, latency and interaural asymmetry ratio (IAR) of cervical vestibular evoked myogenic potentials (cVEMP) in healthy individuals. Subjects and Methods: The study included 50 healthy volunteers. cVEMP procedure was carried out using 500 Hz TB and NB-CE-chirp stimulus (360-720 Hz, up-chirp) in random order. cVEMP were recorded at 100 dB nHL. For each ear and each stimulus, P1 latency, N1 latency and P1N1 amplitude were measured. IAR was also calculated. Results: Mean age was 26.66±9.48 years. cVEMP's in response to both TB and NB CE-chirp stimuli were obtained in all subjects. No statistically significant difference in P1 latency, N1 latency, and P1N1 amplitude was found between the right and left ears for both TB and NB CE-chirp stimuli (p>0.05). In both sides, P1 and N1 latencies were significantly shorter in NB CE-chirp stimulation compared to TB stimulation (p=0.000). In both sides, no statistically significant difference was found in P1N1 amplitude between two types of stimuli (p>0.05). Conclusions: The chirp stimulus produces robust but earlier cVEMP than TB does. This largest series study on NB chirp cVEMP shows that NB chirp is a good and new reliable alternative.

Practical Use Technology for Robot Control in BCI Environment based on Motor Imagery-P300 (동작 상상-P300 기반 BCI 환경에서의 로봇 제어 실용화 기술)

  • Kim, Yong-Honn;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • BCI (Brain Computer Interface) is technology to control external devices by measuring the brain activity, such as electroencephalogram (EEG), so that handicapped people communicate with environment physically using the technology. Among them, EEG is widely used in various fields, especially robot agent control by using several signal response characteristics, such as P300, SSVEP (Steady-State Visually Evoked Potential) and motor imagery. However, in order to control the robot agent without any constraint and precisely, it should take advantage of not only a signal response characteristic, but also combination. In this paper, we try to use the fusion of motor imagery and P300 from EEG for practical use of robot control in BCI environment. The results of experiments are confirmed that the recognition rate decreases compared with the case of using one kind of features, whereas it is able to classify each both characteristics and the practical use technology based on mobile robot and wireless BCI measurement system is implemented.

Primary Role of Posterior Hypothalamic Cholinergic Receptors in Central Regulation of Blood Pressure and Heart Rate in Rats (중추에서 혈압과 심박수 조절에 관여하는 후시상하부 콜린성 수용체의 일차적인 역할)

  • Kim, Seong-Yun;Sung, Ki-Wug;Koh, Hyun-Chul;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.639-645
    • /
    • 1997
  • The purpose of the present study is to determine the role of muscarinic cholinergic receptors of posterior hypothalamus in the central blood pressure regulation when respiration is controlled. In anesthetized and artificially ventilated rats, vasodepressor response was evoked by injection of L-glutamate(10 nmol) neuroexcitatory amino acid into the posterior hypothalamic area. The injection of $carbachol(0.5{\sim}8\;nmol)$ into the same area induced dose-dependent vasodepressor and bradycardic responses. Pretreatment with atropine(4 nmol) completely blocked the vasodepressor response to carbachol(2 nmol). In contrast, in spontaneously breathing rats, the injection of carbachol(8 nmol) into the posterior hypothalamic area induced the vasopressor and tachycardic responses. These results suggest that the muscarinic cholinergic receptors in the posterior hypothalamic area primarily play an inhibitory role in the central regulation of blood pressure and heart rate.

  • PDF