• Title/Summary/Keyword: Evergreen ground cover

Search Result 12, Processing Time 0.017 seconds

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012) (최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.

Influence of Irrigation Times, Soil Treatment and Drainage in Indoor on the Growth Response of Cyrtomium falcatum Ferns Korea Native (실내에서 관수주기, 토양처리, 배수층이 자생 도깨비고비의 생육에 미치는 영향)

  • Ju, Jin Hee;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • It was aimed to promote Cyrtomium falcatum as a material for interior landscape by validating it indoor adaptability in the indoor environment, especially irrigation times, soil treatment and drainage level. Irrigation times were 2 times per week and 7 times per week. Soil treatment and drainage level were carried out drainage-peatmoss : vermiculite : perlite=1 : 1 : 1(D-PVP), peatmoss : vermiculite : perlite=1 : 1 : 1(PVP), drainage-saprolite : leaf mold=1 : 1(D-SL) and saprolite : leaf mold=1 : 1(SL). 1. Top of growth was better with irrigation 7 times per week than irrigation 2 times per week but indoor adaptability was decreased and shown yellowish green. 2. In case of soil treatment, growth was better with saprolite : leaf mold=1 : 1 but indoor growth adaptability was decreased than peatmoss : vermiculite : perlite=1 : 1 : 1. 3. Plant height and blade length were increased under non-drainage treatment but indoor adaptability, number of new fronds and number of sporophyll were decreased under drainage treatment, regardless of irrigation times and soil treatment. 4. Photosynthetic rate(Pn) was the highest in the drainage-peatmoss : vermiculite : perlite=1 : 1 : 1 treatment of irrigation 2 times per week and was the lowest in the saprolite : leaf mold=1 : 1 treatment of irrigation 7 times per week.