• Title/Summary/Keyword: Event-detection

Search Result 650, Processing Time 0.022 seconds

DeepSDO: Solar event detection using deep-learning-based object detection methods

  • Baek, Ji-Hye;Kim, Sujin;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Jo, Wonkeum;Kim, Dongil
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2021
  • We present solar event auto detection using deep-learning-based object detection algorithms and DeepSDO event dataset. DeepSDO event dataset is a new detection dataset with bounding boxed as ground-truth for three solar event (coronal holes, sunspots and prominences) features using Solar Dynamics Observatory data. To access the reliability of DeepSDO event dataset, we compared to HEK data. We train two representative object detection models, the Single Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) with DeepSDO event dataset. We compared the performance of the two models for three solar events and this study demonstrates that deep learning-based object detection can successfully detect multiple types of solar events. In addition, we provide DeepSDO event dataset for further achievements event detection in solar physics.

  • PDF

An Efficient Complex Event Processing Algorithm based on Multipattern Sharing for Massive Manufacturing Event Streams

  • Wang, Jianhua;Lan, Yubin;Lu, Shilei;Cheng, Lianglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1385-1402
    • /
    • 2019
  • Quickly picking up some valuable information from massive manufacturing event stream usually faces with the problem of long detection time, high memory consumption and low detection efficiency due to its stream characteristics of large volume, high velocity, many variety and small value. Aiming to solve the problem above for the current complex event processing methods because of not sharing detection during the detecting process for massive manufacturing event streams, an efficient complex event processing method based on multipattern sharing is presented in this paper. The achievement of this paper lies that a multipattern sharing technology is successfully used to realize the quick detection of complex event for massive manufacturing event streams. Specially, in our scheme, we firstly use pattern sharing technology to merge all the same prefix, suffix, or subpattern that existed in single pattern complex event detection models into a multiple pattern complex event detection model, then we use the new detection model to realize the quick detection for complex events from massive manufacturing event streams, as a result, our scheme can effectively solve the problems above by reducing lots of redundant building, storing, searching and calculating operations with pattern sharing technology. At the end of this paper, we use some simulation experiments to prove that our proposed multiple pattern processing scheme outperforms some general processing methods in current as a whole.

An Efficient Complex Event Detection Algorithm based on NFA_HTS for Massive RFID Event Stream

  • Wang, Jianhua;Liu, Jun;Lan, Yubin;Cheng, Lianglun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.989-997
    • /
    • 2018
  • Massive event stream brings us great challenges in its volume, velocity, variety, value and veracity. Picking up some valuable information from it often faces with long detection time, high memory consumption and low detection efficiency. Aiming to solve the problems above, an efficient complex event detection method based on NFA_HTS (Nondeterministic Finite Automaton_Hash Table Structure) is proposed in this paper. The achievement of this paper lies that we successfully use NFA_HTS to realize the detection of complex event from massive RFID event stream. Specially, in our scheme, after using NFA to capture the related RFID primitive events, we use HTS to store and process the large matched results, as a result, our scheme can effectively solve the problems above existed in current methods by reducing lots of search, storage and computation operations on the basis of taking advantage of the quick classification and storage technologies of hash table structure. The simulation results show that our proposed NFA_HTS scheme in this paper outperforms some general processing methods in reducing detection time, lowering memory consumption and improving event throughput.

Gait-Event Detection for FES Locomotion (FES 보행을 위한 보행 이벤트 검출)

  • Heo Ji-Un;Kim Chul-Seung;Eom Gwang-Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.170-178
    • /
    • 2005
  • The purpose of this study is to develop a gait-event detection system, which is necessary for the cycle-to-cycle FES control of locomotion. Proposed gait event detection system consists of a signal measurement part and gait event detection part. The signal measurement was composed of the sensors and the LabVIEW program for the data acquisition and synchronization of the sensor signals. We also used a video camera and a motion capture system to get the reference gait events. Machine learning technique with ANN (artificial neural network) was adopted for automatic detection of gait events. 2 cycles of reference gait events were used as the teacher signals for ANN training and the remnants ($2\sim5$ cycles) were used fur the evaluation of the performance in gait-event detection. 14 combinations of sensor signals were used in the training and evaluation of ANN to examine the relationship between the number of sensors and the gait-event detection performance. The best combinations with minimum errors of event-detection time were 1) goniometer, foot-switch and 2) goniometer, foot-switch, accelerometer x(anterior-posterior) component. It is expected that the result of this study will be useful in the design of cycle-to-cycle FES controller.

Fault-Tolerant Event Detection in Wireless Sensor Networks using Evidence Theory

  • Liu, Kezhong;Yang, Tian;Ma, Jie;Cheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3965-3982
    • /
    • 2015
  • Event detection is one of the key issues in many wireless sensor network (WSN) applications. The uncertainties that are derived from the instability of sensor node, measurement noise and incomplete sampling would influence the performance of event detection to a large degree. Many of the present researches described the sensor readings with crisp values, which cannot adequately handle the uncertainties inhered in the imprecise sensor readings. In this paper, a fault-tolerant event detection algorithm is proposed based on Dempster-Shafer (D-S) theory (also called evidence theory). Instead of crisp values, all possible states of the event are represented by the Basic Probability Assignment (BPA) functions, with which the output of each sensor node are characterized as weighted evidences. The combination rule was subsequently applied on each sensor node to fuse the evidences gathered from the neighboring nodes to make the final decision on whether the event occurs. Simulation results show that even 20% nodes are faulty, the accuracy of the proposed algorithm is around 80% for event region detection. Moreover, 97% of the error readings have been corrected, and an improved detection capability at the boundary of the event region is gained by 75%. The proposed algorithm can enhance the detection accuracy of the event region even in high error-rate environment, which reflects good reliability and robustness. The proposed algorithm is also applicable to boundary detection as it performs well at the boundary of the event.

Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks (음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선)

  • Kim, Youngsoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

A Study on an Effective Event Detection Method for Event-Focused News Summarization (사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구)

  • Chung, Young-Mee;Kim, Yong-Kwang
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.4
    • /
    • pp.227-243
    • /
    • 2008
  • This study investigates an event detection method with the aim of generating an event-focused news summary from a set of news articles on a certain event using a multi-document summarization technique. The event detection method first classifies news articles into the event related topic categories by employing a SVM classifier and then creates event clusters containing news articles on an event by a modified single pass clustering algorithm. The clustering algorithm applies a time penalty function as well as cluster partitioning to enhance the clustering performance. It was found that the event detection method proposed in this study showed a satisfactory performance in terms of both the F-measure and the detection cost.

Energy Efficient Cluster Event Detection Scheme using MBP in Wireless Sensor Networks (센서 네트워크에서 최소 경계 다각형을 이용한 에너지 효율적인 군집 이벤트 탐지 기법)

  • Kwon, Hyun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.101-108
    • /
    • 2010
  • Many works on energy-efficient cluster event detection schemes have been done considering the energy restriction of sensor networks. The existing cluster event detection schemes transmit only the boundary information of detected cluster event nodes to the base station. However, If the range of the cluster event is widened and the distribution density of sensor nodes is high, the existing cluster event detection schemes need high transmission costs due to the increase of sensor nodes located in the event boundary. In this paper, we propose an energy-efficient cluster event detection scheme using the minimum boundary polygons (MBP) that can compress and summarize the information of event boundary nodes. The proposed scheme represents the boundary information of cluster events using the MBP creation technique in the large scale of sensor network environments. In order to show the superiority of the proposed scheme, we compare it with the existing scheme through the performance evaluation. Simulation results show that our scheme maintains about 92% accuracy and decreases about 80% in energy consumption to detect the cluster event over the existing schemes on average.

Event Detection on Motion Activities Using a Dynamic Grid

  • Preechasuk, Jitdumrong;Piamsa-nga, Punpiti
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.538-555
    • /
    • 2015
  • Event detection based on using features from a static grid can give poor results from the viewpoint of two main aspects: the position of the camera and the position of the event that is occurring in the scene. The former causes problems when training and test events are at different distances from the camera to the actual position of the event. The latter can be a source of problems when training events take place in any position in the scene, and the test events take place in a position different from the training events. Both issues degrade the accuracy of the static grid method. Therefore, this work proposes a method called a dynamic grid for event detection, which can tackle both aspects of the problem. In our experiment, we used the dynamic grid method to detect four types of event patterns: implosion, explosion, two-way, and one-way using a Multimedia Analysis and Discovery (MAD) pedestrian dataset. The experimental results show that the proposed method can detect the four types of event patterns with high accuracy. Additionally, the performance of the proposed method is better than the static grid method and the proposed method achieves higher accuracy than the previous method regarding the aforementioned aspects.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.