• Title/Summary/Keyword: Event-based simulation

Search Result 530, Processing Time 0.027 seconds

The DEVS Integrated Development Environment for Simulation-based Battle experimentation (시뮬레이션 기반 전투실험을 위한 DEVS 통합 개발 환경)

  • Hwang, Kun-Chul;Lee, Min-Gyu;Han, Seung-Jin;Yoon, Jae-Moon;You, Yong-Jun;Kim, Sun-Bum;Kim, Jung-Hoon;Nah, Young-In;Lee, Dong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.39-47
    • /
    • 2013
  • Simulation based Battle Experimentation is to examine the readiness for a battle using simulation technology. It heavily relies on the weapon systems modeling and simulation. To analyze the characteristics and complexity of the weapon systems in the experiment, the modeling & simulation environment has to be able to break down the system of systems into components and make the use of high fidelity components such as real hardware in simulation. In that sense, the modular and hierarchical structure of DEVS (Discrete EVent System Specification) framework provides potentials to meet the requirements of the battle experimentation environment. This paper describes the development of the DEVS integrated development environment for Simulation based Battle Experimentation. With the design principles of easy, flexible, and fast battle simulation, the newly developed battle experimentation tool mainly consists of 3 parts - model based graphical design tool for making DEVS models and linking them with external simulators easily through diagrams, the experiment plan tool for speeding up a statistic analysis, the standard components model libraries for lego-like building up a weapon system. This noble simulation environment is to provide a means to analyze complex simulation based experiments with different levels of models mixed in a simpler and more efficient way.

Implementation of a tactic manager for the target motion analysis simulation of a submarine (잠수함의 표적기동분석 시뮬레이션을 위한 전술처리기의 구현)

  • Cho, Doo-Yeoun;Son, Myeong-Jo;Cha, Ju-Hwan;Lee, Kyu-Yeul;Kim, Tae-Wan;Ko, Yong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.65-74
    • /
    • 2007
  • A tactic manager which can change the behavior of a simulation model according to the tactic definition file has been studied and implemented. Based on the DEVS(discrete event system specification) formalism, we generated a simulation model which is equipped with the inter ace to the tactic manager. To demonstrate the effectiveness of the tactic manager, a target motion analysis simulation of the warfare between a submarine and a surface ship is simulated.

  • PDF

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve (가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

Uniformity Evaluation of Elderly Hospital Outpatients' Waiting Space using Discrete Event Simulation (이산사건 시뮬레이션을 이용한 요양병원 외래부 대기공간 균일성 평가)

  • Yoon, So-Hee;Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.490-499
    • /
    • 2017
  • In recent years, the introduction of complex systems analysis based on various variables has become more active in order to identify and analyze complex problems of Modern Society. Prediction of patients' spatial perception and usability according to the spatial arrangement of the outpatient department is a very important factor for providing high quality hospital service. For objective analysis, the standard program procedure and analysis index for the diseases of the elderly were prepared and the uniformity of the atmospheric space was evaluated through heat map analysis and quantitative analysis. In this study, 73 cells were installed and simulated to analyze the uniformity of the four alternatives according to the change of the arrangement of the medical care space, receiving space, and consultation space using the complex system analysis method for the nursing hospitals. The resulting density was derived. The results are as follows. 1)The layout of the reception space has the greatest influence on the total spatial density of the waiting space. 2) The uniformity of the waiting space can be increased by separating the examination space and the examination space. 3)The closer the location of the receiving space is from the entrance, the greater the density of the waiting space. Finally, this study applied discrete event simulation to the evaluation of uniformity of atmosphere space, and proved that the actor - based model can be utilized for utilization and evaluation as spatial analysis methodology.

DEVS-based Modeling Simulation for Semiconductor Manufacturing Using an Simulation-based Adaptive Real-time Job Control Framework (시뮬레이션 기반 적응형 실시간 작업 제어 프레임워크를 적용한 웨이퍼 제조 공정 DEVS 기반 모델링 시뮬레이션)

  • Song, Hae-Sang;Lee, Jae-Young;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2010
  • The inherent complexity of semiconductor fabrication processes makes it hard to solve well-known job scheduling problems in analytical ways, which leads us to rely practically on discrete event modeling simulations to learn the effects of changing the system's parameters. Meanwhile, unpredictable disturbances such as machine failures and maintenance diminish the productivity of semiconductor manufacturing processes with fixed scheduling policies; thus, it is necessary to adapt job scheduling policy in a timely manner in reaction to critical environmental changes (disturbances) in order for the fabrication process to perform optimally. This paper proposes an adaptive job control framework for a wafer fabrication process in a control system theoretical approach and implements it based on a DEVS modeling simulation environment. The proposed framework has the advantages in view of the whole systems understanding and flexibility of applying new rules compared to most ad-hoc software approaches in this field. Furthermore, it is flexible enough to incorporate new job scheduling rules into the existing rule set. Experimental results show that this control framework with adaptive rescheduling outperforms fixed job scheduling algorithms.

DEVS-Based Simulation Model Development for Composite Warfare Analysis of Naval Warship (함정의 복합전 효과도 분석을 위한 DEVS 기반 시뮬레이션 모델 개발)

  • Mi Jang;Hee-Mun Park;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.41-58
    • /
    • 2023
  • As naval warfare changes to composite warfare that includes simultaneous engagements against surface, underwater, and air enemies, performance and tactical analysis are required to respond to naval warfare. In particular, for practical analysis of composite warfare, it is necessary to study engagement simulations that can appropriately utilize the limited performance resources of the detection system. This paper proposes a DEVS (Discrete Event Systems Specifications)-based simulation model for composite warfare analysis. The proposed model contains generalized models of combat platforms and armed objects to simulate various complex warfare situations. In addition, we propose a detection performance allocation algorithm that can be applied to a detection system model, considering the characteristics of composite warfare in which missions must be performed using limited detection resources. We experimented with the effectiveness of composite warfare according to the strength of the detection system's resource allocation, the enemy force's size, and the friendly force's departure location. The simulation results showed the effect of the resource allocation function on engagement time and success. Our model will be used as an engineering basis for analyzing the tactics of warships in various complex warfare situations in the future.

Vessel and Navigation Modeling and Simulation based on DEVS Formalism : Case Studies in Collision Avoidance Simulation of Vessels by COLREG (DEVS 형식론 기반의 선박 항해 모델링 및 시뮬레이션 (II) : COLREG 기반 선박 충돌회피 시뮬레이션을 통한 사례연구)

  • Hwang, Hun-Gyu;Woo, Sang-Min;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1700-1709
    • /
    • 2019
  • Recently, many researches have been under way to develop systems (services) to support the safety navigation of ships, and in these studies, common difficulties have been encountered in assessing the usefulness and effectiveness of the developed system. To solve these problems, we propose the DEVS-based ship navigation modeling and simulation technique. Following the preceding study, we analyze the COLREG rules and reflected to officer and helmsman agent models for decision making. Also we propose estimation and interpolation techniques to adopt the motion characteristics of the actual vessel to simulation. In addition, we implement the navigation simulation system to reflect the designed proposed methods, and we present five-scenarios to verify the developed simulation system. And we conduct simulations according to each scenario and the results were reconstructed. The simulation results confirm that the components modelled in each scenario enable to operate according to the navigation relationships.

Development of a Synthetic Multi-Agent System;The KMITL Cadence 2003 Robotic Soccer Simulation Team, Intelligent and AI Based Control

  • Chitipalungsri, Thunyawat;Jirawatsiwaporn, Chawit;Tangchupong, Thanapon;Kittitornkun, Surin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.879-884
    • /
    • 2004
  • This paper describes the development of a synthetic multi-agent called KMITL Cadence 2003. KMITL Cadence 2003 is a robotic soccer simulation team consisting of eleven autonomous software agents. Each agent operates in a physical soccer simulation model called Robocup Soccer Server which provides fully distributed and real-time multi-agent system environment. All teammates have to cooperate to achieve the common goal of winning the game. The simulation models many aspects of the football field such as noise in ball movements, noisy sensors, unreliable communication channel between teammates and actuators, limited physical abilities and restricted communication. This paper addresses the algorithm to develop the soccer agents to perform basic actions which are scoring, passing ball and blocking the opponents effectively. The result of this development is satisfactory because the successful scoring attempts is increased from 11.1% to 33.3%, successful passing ball attempts is increased from 22.08% to 63.64%, and also, successful intercepting attempts is increased from 88% to 97.73%.

  • PDF

A Reliable Study on the Accident Reconstruction using Accident Data Recorder (사고기록장치를 이용한 교통사고재현에 관한 신뢰성 연구)

  • Baek, Se-Ryong;Cho, Joeng-Kwon;Park, Jong-Jin;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.179-187
    • /
    • 2014
  • As an Accident data recorder (ADR) is a system to record a vehicle's status and dynamics information on the before and after of accident, Traffic accident investigation agencies and parts developers have a lot of interest to analyze an accident objectively and develop automotive safety devices by using real accident data, This study is to analyze an accident objectively and scientifically on the basis of traffic accident reconstruction with the use of output data of an event data recorder. This study is conducted double lane change test six times and slalom test one time as a field driving test and simulation. Based on the vehicle speed, the longitudinal and transverse acceleration, steering angle, driving path, and other kinds of information obtained from the field driving test, this study performed a simulation with PC-Crash program of reenacting and analyzing a traffic accident. The simulation was performed twice in the acceleration-steering angle input method and in the acceleration-driving path input method. By comparing the result of the field driving test with the results of the two simulations, we drew an analysis method with the optimal path reconstruction.