• Title/Summary/Keyword: Event-Sequence Analysis

Search Result 76, Processing Time 0.021 seconds

Specifcation and Farmalization of Transition Event Sequence (천이 사건 순서의 표현과 정형화)

  • Kim, Jung-Sool;Kang, Byung-Wook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1204-1215
    • /
    • 1998
  • In this paper, we propose a scenario representing method, a specification language, and a verification technique for OARTS(Object based Approach for Real-Time Systems). As well as the general modeling method(event trace diagram), this study includes a specification language and a verification technique because there was no study about methodological level technique for scenario development as yet. Centering around the synchronization problem of transition of external modules which are the communication interfaces based on the objects, we lay stress on the representation of sequence of external events and internal action transitions. From the results of practical experiences, it has been ascertained that the proposed method reflect well the requirements in the analysis step, and its validity of the representation has been identified by a conceptual verifier. We support that it can serve as an analyzing tool for representing a general real-time scenarios also.

  • PDF

Categorizing accident sequences in the external radiotherapy for risk analysis

  • Kim, Jonghyun
    • Radiation Oncology Journal
    • /
    • v.31 no.2
    • /
    • pp.88-96
    • /
    • 2013
  • Purpose: This study identifies accident sequences from the past accidents in order to help the risk analysis application to the external radiotherapy. Materials and Methods: This study reviews 59 accidental cases in two retrospective safety analyses that have collected the incidents in the external radiotherapy extensively. Two accident analysis reports that accumulated past incidents are investigated to identify accident sequences including initiating events, failure of safety measures, and consequences. This study classifies the accidents by the treatments stages and sources of errors for initiating events, types of failures in the safety measures, and types of undesirable consequences and the number of affected patients. Then, the accident sequences are grouped into several categories on the basis of similarity of progression. As a result, these cases can be categorized into 14 groups of accident sequence. Results: The result indicates that risk analysis needs to pay attention to not only the planning stage, but also the calibration stage that is committed prior to the main treatment process. It also shows that human error is the largest contributor to initiating events as well as to the failure of safety measures. This study also illustrates an event tree analysis for an accident sequence initiated in the calibration. Conclusion: This study is expected to provide sights into the accident sequences for the prospective risk analysis through the review of experiences.

Analysis for Scalar Mixing Characteristics using Linear Eddy Model (Linear Eddy Model을 이용한 스칼라의 혼합특성 해석)

  • Kim, H.J.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The present study is focused on the small scale turbulent mixing processes in the scalar Held. In order to deal with molecular mixing in turbulent flow, the linear eddy model is addressed. In each realization, the molecular mixing term is implemented deterministically, and turbulent stirring is represented by a sequence of instantaneous, statistically independent rearrangement event called by triplet map. The LEM approach is applied with relatively simple conditions. The characteristics of scalar mixing and PDF profiles are addressed in detail.

  • PDF

Geometric and Kinematic Characteristics of Fracture System in the Sancheong Anorthosite Complex, Korea (산청 회장암복합체 내 발달하는 단열계의 기하학적·운동학적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2016
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Sancheong anorthosite complex and the Jirisan metamorphic rock complex, the Mesozoic granitoids which intruded them. Several fracture sets with various geometric indicators, which determine their relative timing and shear sense, are well observed in the Sancheong anorthosite complex. The aim of this study is to determine the development sequence of extension fractures, the movement sense and development sequence of shear fractures in the Sancheong anorthosite complex on the basis of detailed analysis of their geometric indicators. This study suggests fracture system of the Sancheong anorthosite complex was formed at least through five different fracturing events, named as Dn to Post-Dn+3 phases. (1) Dn phase: extension fracturing event of NNW trend. The fracture set experienced the reactivations of dextral ${\rightarrow}$ sinistral shearing with the change of stress field afterward. (2) Dn+1 phase: extension fracturing event of (N)NE trend. The fracture set experienced the reactivations of sinistral ${\rightarrow}$ sinistral ${\rightarrow}$ dextral. (3) Dn+2 phase: extension fracturing event of NW trend. The fracture set experienced the activated of dextral shearing. (4) Dn+3 phase: extension fracturing event of N-S trend. (5) Post-Dn+3 phase: extension fracturing event of (E)NE trend. Dn deformation formed during the early Songnim orogeny. Dn+1 deformation formed during the late Songnim orogeny. Dn+2 deformation formed during the Daebo orogeny. Dn+3 deformation formed during the Bulguksa orogeny.

Clonal plant as experimental organisms - DNA mutation rate evaluation in the radiation contaminated area of Fukushima Daiichi NPP accident

  • KANEKO, Shingo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.25-25
    • /
    • 2018
  • The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused severe radioactive contamination in the surrounding environment. Since the accident, much attention has been paid to the biological and genetic consequences of organism inhabiting the contaminated area. The effect of radiation exposure on genetic mutation rates is little known, especially for low doses and in situ conditions. Evaluating DNA mutation by low levels of radiation dose is difficult due to the rare mutation event and lack of sequence information before the accident. In this study, correlations with air dose levels and somatic DNA mutation rates were evaluated using Next Generation Sequencer for the clonal plant, Phyllostachys edulis. This bamboo is known to spread an identical clone throughout Japan, and it has the advantage that we can compare genetic mutation rate among identical clone growing different air dose levels. We collected 94 samples of P. edulis from 14 sites with air dose rates from $0.04{\sim}7.80{\mu}Gy/h$. Their clonal identity was confirmed by analysis using 24 microsatellite markers, and then, sequences among samples were compared by MIG sequence. The sequence data were obtained from 2,718 loci. About ~200,000 bp sequence (80 bp X 2,718 loci) were obtained for each sample, and this corresponds to about 0.01% of the genome sequence of P. edulis. In these sequences, 442 loci showed polymorphism patterns including recent origin mutation, old mutation, and sequence errors. The number of mutations per sample ranged from 0 to 13, and did not correlate with air dose levels. This result indicated that DNA mutations have not accumulated in P. edulis living in the air doses levels less than $10{\mu}Gy/h$. Our study also suggests that mutation rates can be assessed by selecting an appropriate experimental approach and analyzing with next generation sequencer.

  • PDF

Analysis of Film 〈Obaltan〉 focused on Narratology's Viewpoint (서사학적 관점으로 분석한 영화〈오발탄〉의 서사구조 연구)

  • Kim, Jong-Wan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.111-119
    • /
    • 2011
  • Movie research in the 1980's structuralism looks tendency to escape director or text research and analyze spectator or inspection action. These post-structuralist divert interest by analytic convention of spectators in analysis by director's intention or text type correctly. There is the age that spectator, inspectional action and inspectional subject weighs more than director, work and text itself. But, inspection of movie can be person's enemy by director's narrative strategy or spectator's analytic quality that depend on a text and spectator and their interaction usually, and only method to acquire universality chooses full analytic discourse to principle. We should be structured by symbol system that the event is consisted of movie language to reappear the event through narrative in movie and this symbol system, director's narrative strategy can cause fixed esthetic distance between spectator. Researches to analyze this distance need to keep universal validity as much as being accepted by effort to gap with director and spectator. Therefore, narrative poetry that I analyze movie narration style by 'narrated' and unit of 'narrating' and study the form and function so-called, is going to follow narratology's access method. The consistent argument of this narrative poetry is that story is consisted of the events and these observe to structured thing by unit that is sequence through arrangement with the other event that adjoin in the event. Also, director need consensus with spectator to reappear connection of this event logically and it is thing which this reappearance form can be done characteristic by narrative strategy in directing. I am going to try narrative structure analysis of movie by narrative that is connected at structure of the event and 'narrating-narrative acts' that is interested in way to reappear this story to spectator hereupon. Of course, at process of research, Roland Barthes and his followers wish to apply 'narrative function' and concept of 'narrative acts' that prefer from time to time.

A Simple Metric for Assessing the Severity of Partial Discharge Activity Based on Time-Sequence-Analysis-Discharge Level Patterns

  • Stewart Brian G;Yang Lily;Judd Martin D;Reid Alistair;Fouracre Richard A
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.313-318
    • /
    • 2006
  • This paper introduces a partial discharge (PD) severity metric, S, based on the evaluation of time-sequence PD data capture and resulting Time-Sequence-Analysis Discharge (TSAD) level distributions. Basically based on an IEC60270 measurement technique, each PD event is time stamped and the discharge level noted. By evaluating the time differences between a previous and subsequent discharge, a 3D plot of time-sequence activity and discharge levels can be produced. From these parameters a measurement of severity, which takes into account dynamic or instantaneous variations in both the time of occurrence and the level of discharge, rather than using standard repetition rate techniques, can be formulated. The idea is to provide a measure of the severity of PD activity for potentially measuring the state of insulation within an item of plant. This severity measure is evaluated for a simple point-plane geometry in $SF_{6}$ as a function of gap distance and applied high voltage. The results show that as the partial discharge activity increases, the severity measure also increases. The importance of future investigations, quantifications and evaluations of the robustness, sensitivity and importance of such a severity measurement, as well as comparing it with typical repetition rate assessment techniques, and other monitoring techniques, are also very briefly discussed.

Recognition of Events by Human Motion for Context-aware Computing (상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식)

  • Cui, Yao-Huan;Shin, Seong-Yoon;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.47-57
    • /
    • 2009
  • Event detection and recognition is an active and challenging topic recent in Computer Vision. This paper describes a new method for recognizing events caused by human motion from video sequences in an office environment. The proposed approach analyzes human motions using Motion History Image (MHI) sequences, and is invariant to body shapes. types or colors of clothes and positions of target objects. The proposed method has two advantages; one is thant the proposed method is less sensitive to illumination changes comparing with the method using color information of objects of interest, and the other is scale invariance comparing with the method using a prior knowledge like appearances or shapes of objects of interest. Combined with edge detection, geometrical characteristics of the human shape in the MHI sequences are considered as the features. An advantage of the proposed method is that the event detection framework is easy to extend by inserting the descriptions of events. In addition, the proposed method is the core technology for event detection systems based on context-aware computing as well as surveillance systems based on computer vision techniques.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

COMPARATIVE ANALYSIS OF STATION BLACKOUT ACCIDENT PROGRESSION IN TYPICAL PWR, BWR, AND PHWR

  • Park, Soo-Yong;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.311-322
    • /
    • 2012
  • Since the crisis at the Fukushima plants, severe accident progression during a station blackout accident in nuclear power plants is recognized as a very important area for accident management and emergency planning. The purpose of this study is to investigate the comparative characteristics of anticipated severe accident progression among the three typical types of nuclear reactors. A station blackout scenario, where all off-site power is lost and the diesel generators fail, is simulated as an initiating event of a severe accident sequence. In this study a comparative analysis was performed for typical pressurized water reactor (PWR), boiling water reactor (BWR), and pressurized heavy water reactor (PHWR). The study includes the summarization of design differences that would impact severe accident progressions, thermal hydraulic/severe accident phenomenological analysis during a station blackout initiated-severe accident; and an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.