• Title/Summary/Keyword: Event Tree Methodology

Search Result 35, Processing Time 0.036 seconds

Vital Area Identification Analysis of A Hypothetical Nuclear Facility Using VIPEX (VIPEX를 이용한 가상 원자력시설의 핵심구역 파악 분석)

  • Lee, Yoon-Hwan;Jung, Woo-Sik;Lee, Jin-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.87-95
    • /
    • 2011
  • The urgent VAI(Vital Area Identification) method development is required since 'The Act of Physical Protection and Radiological Emergency' that is established in 2003 requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The KAERI(Korea Atomic Energy Research Institute) has developed the VAI methodology and VAI software called as VIPEX(Vital area Identification Package EXpert) for identifying the vital areas. This study is to demonstrate the applicability of KAERI's VAI methodology to a hypothetical facility, and to identify the importance of information of cable and piping runs when identifying the vital areas. It is necessarily needed to consider cable and piping runs to determine the accurate and realistic TEPS(Top Event Prevention Set). If the information of cable and piping runs of a nuclear power plant is not considered when determining the TEPSs, it is absolutely impossible to acquire the complete TEPSs, and the results could be distorted by missing it. The VIPEX and FTREX(Fault Tree Reliability Evaluation eXpert) properly calculate MCSs and TEPSs using the fault tree model, and provide the most cost-effective method to save the VAI and physical protection costs.

Predicting the Tritium Release Accident in a Nuclear Fusion Plant (원자핵 융합 발전소의 삼중수소 유출 사고 예측)

  • 양희중
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.201-212
    • /
    • 1998
  • A methodology of the safety analysis on the fusion power plant is introduced. It starts with the understanding of the physics and engineering of the plant followed by the assessment of the tritium inventory and flow rate. We a, pp.y the probabilistic risk assessment. An event tree that explains the propagation of the accident is constructed and then it is translated in to an influence diagram, that is accident is constructed and then it is translated in to an influence diagram, that is statistically equivalent so far as the parameter updating is concerned. We follow the Bayesian a, pp.oach where model parameters are treated as random variables. We briefly discuss the parameter updating scheme, and finally develop the methodology to obtain the predictive distribution of time to next severe accident.

  • PDF

Forming Shop Analysis with Adaptive Systems Approach (적응시스템 접근법을 이용한 조선소 가공공장 분석)

  • Dong-Hun Shin;Jong-Hun Woo;Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.75-80
    • /
    • 2002
  • In these days of severe struggle for existence, the world has changed a great deal to global and digital oriented period. The enterprises try to introduce new management and production system to adapt such a change. But, if the only new technologies are applied to an enterprise without definite analysis about manufacturing, failure fellows as a logical consequence. Hence, enterprise must analyze manufacturing system definitely and needs new methodologies to mitigate risk. This study suggests that the new approach, which is systems approach for process improvement, is organized to systems analysis, systems diagnosis, and systems verification. Systems analysis analyzes manufacturing systems with object-oriented methodology-UML(Unified Modeling language) from a point of product, process, and resource view. Systems diagnosis identifies the constraints to optimize the system through scientific management or TOC(Theory of constraints). Systems verification shows the solution with virtual manufacturing technique applied to the core problem which emerged from systems diagnosis. This research shows the artifacts to improve the productivity with the above methodology applied to forming shop. UML provides the definite tool for analysis and re-usability to adapt itself to environment easily. The logical tree of TOC represents logical tool to optimize the forming shop. Discrete event simulator-QUEST suggests the tool for making a decision to verify the optimized forming shop.

Cyber Security Risk Evaluation of a Nuclear I&C Using BN and ET

  • Shin, Jinsoo;Son, Hanseong;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.517-524
    • /
    • 2017
  • Cyber security is an important issue in the field of nuclear engineering because nuclear facilities use digital equipment and digital systems that can lead to serious hazards in the event of an accident. Regulatory agencies worldwide have announced guidelines for cyber security related to nuclear issues, including U.S. NRC Regulatory Guide 5.71. It is important to evaluate cyber security risk in accordance with these regulatory guides. In this study, we propose a cyber security risk evaluation model for nuclear instrumentation and control systems using a Bayesian network and event trees. As it is difficult to perform penetration tests on the systems, the evaluation model can inform research on cyber threats to cyber security systems for nuclear facilities through the use of prior and posterior information and backpropagation calculations. Furthermore, we suggest a methodology for the application of analytical results from the Bayesian network model to an event tree model, which is a probabilistic safety assessment method. The proposed method will provide insight into safety and cyber security risks.

A New Approach to Selection of Inspection Items using Risk Insight of Probabilistic Safety Assessment for Nuclear Power Plants

  • Park, Younwon;Kim, Hyungjin;Lim, Jihan;Choi, Seongsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • The regulatory periodic inspection program (PSI) conducted at every overhaul period is the most important process for confirming the safety of nuclear power plants. The PSI for operating nuclear power plants in Korea mainly consist of component level performance check that had been developed based on deterministic approach putting the same degree of importance to all the inspection items. This inspection methodology is likely to be effective for preoperational inspection. However, once the plant is put into service, the PSI must be focused on whether to minimize the risk of accident using defense-in-depth concept and risk insight. The incorporation of defense-in-depth concept and risk insight into the deterministic based safety inspection has not been well studied so far. In this study, two track approaches are proposed to make sure that core damage be avoided: one is to secure success path and the other to block the failure path in a specific event tree of PSA. The investigation shows how to select safety important components and how to set up inspection group to ensure that core damage would not occur for a given initiating event, which results in strengthening defense-in-depth level 3.

A Study on A Dynamic Reliability Analysis Model (동적신뢰도 평가모델의 연구)

  • 제무성
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.239-246
    • /
    • 2000
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF

Tabu Search-Genetic Process Mining Algorithm for Discovering Stochastic Process Tree (확률적 프로세스 트리 생성을 위한 타부 검색 -유전자 프로세스 마이닝 알고리즘)

  • Joo, Woo-Min;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.183-193
    • /
    • 2019
  • Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.

Risk Analysis of Ammonia Leak in the Refrigeration Manufacturing Facilities (냉동제조 시설의 암모니아 누출사고 위험 분석)

  • Kang, Su-Jin;Lee, Ik-Mo;Moon, Jin-Young;Chon, Young-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Recently, ammonia leak occurred frequently in the domestic refrigeration manufacturing facilities. Ammonia caused great damage to the environment and human health in the event of an accident as combustible gases and toxic gases. After considering the types of ammonia accidents of domestic refrigeration manufacturing facilities and selected accident scenarios and to analyze the risk analysis through Impact range estimates and frequency analysis and there was a need to establish measures to minimize accident damage. In this study, depending on the method of analysis quantitative risk assessment we analyzed the risk of the receiver tank of ammonia system. Scenario analysis conditions were set according to the 'Technical guidelines for the selection of accident scenario' under the chemicals control act and 'Guidelines for chemical process quantitative risk analysis' of center for chemical process safety. The risk estimates were utilized for consequence analysis and frequency analysis by SAFETI program of DNV, event tree analysis methodology and part count methodology. The individual risk of ammonia system was derived as 7.71E-04 / yr, social risk were derived as 1.17E-03 / yr. The derived risk was confirmed to apply as low as reasonably practicable of the national fire protection association and through risk calculation, it can be used as a way to minimize accidents ammonia leakage accident damage.

Study on the Transport Reliability Concerning Risks Scenarios (위험사건(Risk)발생 시나리오를 고려한 운송 신뢰성 연구)

  • Kim, Eun-Ji;Ganbat, Enkhtsetseg;Kim, Hwan-seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.256-257
    • /
    • 2015
  • The trend of globalization and the development of the communication-Information technology not only complexified the supply chain, but also, led to the needs of the high quality of logistics service for customers. I t defines risks that can occur in truck transport under unexpected situation with Fault Tree Analysis(FTA) and calculates failure rate concerning relationship between each risks. Based on the 4 kinds of middle failure events that defined in FTA, Reliability function which is regarded about risks sequentiality and time flow is resulted in. I t is meaningful that it calculates reliability of logistics and transportation system with engineering methodology.

  • PDF

A New Dynamic Reliability Assessment for Mid-loop Operations in a Nuclear Power Plant

  • Jae, Moosung
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.25-35
    • /
    • 2002
  • This paper presents a dynamic reliability assessment methodology for use in the safety assessment of a complex system such as a nuclear power plant. The method is applied to a dynamic analysis of the potential accident sequences that may occur during mid-loop operation in a nuclear power plant. The idea behind this approach consists of both the use of the concept of the performance achievement/requirement correlation and of a dynamic event tree generation method. The assessment of the system reliability depends on the determination of both the required performance distribution and the achieved performance distribution. The quantified correlation between requirement and achievement represents a comparison between two competing variables. It is demonstrated that this method is easily applicable and flexible in that it can be applied to any kind of dynamic reliability problem.

  • PDF