사람과 컴퓨터의 인터페이스를 위한 방법에는 여러 가지가 있으나 보나 편리하고 몸이 불편한 사람들도 이용할 수 있도록 하기 위하여 최근에는 사람의 뇌파를 이용하여 인터페이스를 하기 위한 연구가 활발히 진행되고 있다. 따라서 세계 여러나라에서 뇌파에 대한 연구가 진행되고 있다. 하지만 아직까지 뇌파에 대한 정확한 분석이 이루어지지 못하고 있는 실정이다. 이를 위해 본 논문에서는 정확한 뇌파분석을 위한 뇌파 유발 자극방법 및 측정법을 제안하고, Fp1, Fp2, C3, C4 영역에서 뇌파를 측정하여 사람이 팔을 움직이고자 하는 상상을 할 때 ${\mu}$파와 ${\beta}$파에서 발견되는 Event-Related Synchronization(ERS), Event-Related Desynchronization(ERD)을 분석함으로써 사람의 의도를 뇌파를 통해 인지하고자 한다. 실험결과 피험자가 오른쪽 팔을 움직이고자 할 경우 왼쪽 뇌에서 ${\mu}$파 감소하고 ${\beta}$파는 증가하였으며, 왼쪽 팔을 움직이고자 한 경우 반대로 우뇌에서 ${\mu}$파가 감소하고 ${\beta}$파가 증가하는 것을 알 수 있었다.
EEG(Electroencephalogram) provides a possibility of communicating between a human and a computer, called BCI(brain computer interface). EEG evoked by a movement has been often used as a control command of a computer. This study is to predict human movements by EEG parameters showed significant consistency. Three undergraduate students were asked to move both hands and foots thirty times respectively. Each movement consisted of single and three consecutive movements. Their EEG signals were analyzed to obtained ERD(Event Related Desynchronization) and ERS(Event Related Synchronization). The results showed that ERD and ERS could be used as a significant classifier identifying either single movement or repetitive movement of human limbs. The number of repetition of movement could be used to various control commands of a computer.
사람과 컴퓨터의 인터페이스를 위한 방법에는 여러 가지가 있으나 보다 편리하고 몸이 불편한 사람들도 이용할 수 있도록 하기 위하여 최근에는 사람의 생체신호를 이용하여 Interface하기위한 연구가 활발히 진행되고 있다. 생체신호에는 뇌파, 근전도, 심전도, 등 여러 가지가 있지만 이를 위해 사용자의 가장 많은 정보를 내포하고 있는 뇌파에 대한 연구는 필수적이다. 따라서 세계 여러 나라에서 뇌파에 대한 연구가 진행되고 있지만 아직까지는 뇌파에 대한 정확한 분석이 이루어지지 못하고 있는 실정이다. 이를 위해 본 논문에서는 정확한 뇌파분석을 위한 뇌파 유발 자극 방법 및 측정법을 제안하고 사람이 몸을 움직이고자 하는 상상을 할 때 ERS(Event-Related Synchronization), ERD(Event-Related Desynchronization)를 분석함으로써 사람의 의도를 뇌파를 통해 분석하고자 한다.
본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 정상적인 대 마비 환자들을 위한, 생각만으로 외부의 장치를 제어할 수 있도록 하는 BCI(Brain-Computer Interface) 시스템 제어기술을 연구하였다. 사지를 움직이는 상상을 할 경우, 뇌의 운동 감각 피질 영역에서 발생하는 뮤리듬(${\mu}8$-12Hz)에서 증가되는 신호의 패턴인 Event-Related Synchronization (ERS)를 Short-Time Fourier Transform (STFT)과 Particle Swarm Optimization (PSO)를 이용하여 검출 하는 방법을 시도 하였다. ERS는 사람마다 다른 주파수 영역에서 발생하며, 본 논문에서는 ERS가 가장 많이 발현되고 전압이 큰 주파수를 검출하기 위해 8-12Hz 주파수영역의 EEG평균에서 PSO를 이용하여 가장 큰 진폭을 가지는 주파수를 확인 한 후, 해당 주파수를 사용하여 C3, C4채널에서 동작 상상 시 나타나는 ERS의 특징을 PSO를 이용하여 찾는 것이며. 개개인 마다 다른 주파수 영역에서 나타나는 ERS의 특징을 가장 많이 발현되는 주파수영역으로 고정하여 움직임 분석을 시도 하였다. 실험 결과에 사용된 data는 BCI competition IV data set의 실험자 b data를 사용 하였고, 하나의 주파수 대역만을 사용한 결과 왼손 40%, 오른손 38% 검출 정확도를 보였다.
신체 부위를 움직이는 상상을 할 때, 일반적으로 뇌의 감각 및 운동 피질 영역에서 특정 주파수 대역의 EEG(Electroencephalography) 신호의 세기가 감소하거나 증가하는 ERD(Event-Related Desynchronization)/ERS(Event-Related Synchronization) 현상이 발생한다. 하지만 ERD/ERS는 현상은 피험자에 의존적이고 매시도마다 큰 차이를 보인다. 이러한 문제를 해결하기 위해, 본 논문에서 각 시간-주파수 공간에 대하여 서로 다른 공간 필터를 구성하는 비 동질(non-homogeneous) 공간 필터 최적화 방법을 제안한다. EEG 신호는 시간에 대하여 비정상적(non-stationary) 특징을 가지기 때문에 제안하는 방법과 같이 시간에 따라 변화하는 ERD/ERS 특징을 반영하여 공간적 특징을 추출하는 방법은 시간에 대한 변화를 고려하지 않은 기존의 방법보다 우수한 성능을 보인다. 본 논문에서는 International BCI Competition IV에서 제공하는 4가지 동작 상상(왼손, 오른손, 발, 혀)에 대한 EEG 신호 데이터를 사용하여 동작 상상 분류 실험을 하고 이 결과를 기존의 타 방법들과 비교 분석하였다. 실험 결과, 피험자에 따라 서로 다른 시간-주파수 특징이 추출됨을 확인하였고, 최적화된 공간 필터들이 시간에 따라 변화하는 것을 확인하였다. 또한 이러한 특징을 이용하여 분류를 수행하였을 때, 더욱 우수한 분류 결과를 보임을 확인하였다.
최근에 뇌파를 이용하여 컴퓨터와 통신하거나 기기를 제어할 수 있는 이른바 뇌-컴퓨터 인터페이스BCI(Brain-Computer Interface)에 대한 연구가 대두되고 있다. 이러한 BCI 연구의 궁극적 목표는 다양한 정신상태에 따른 뇌파의 특성을 파악하여 컴퓨터나 기기 등을 제어하는 것이다. 본 논문에서는 움직임과 관련 있는 10~12Hz의 mu파 영역에서의 ERD/ERS를 계산하였고, 그 결과 왼쪽과 오른쪽 손의 움직임을 상상할 때에 운동과 관련된 기능이 집중되어 있는 일차운동영역(primary motor area)의 mu파에서 ERD/ERS의 차이가 나타남을 발견하였다 또한, RLS방법을 사용한 Adaptive Autoregressive Model 계수의 특징을 추출을 하였으며, 이를 신경망으로 학습시켜 인식률을 비교하였다.
The purpose of this study was to identify the correlation between electroencephalography (EEG) and strength, using grip strength. 64-channel EEG data were recorded from five healthy subjects in tasks requiring handgrip contractions of nine levels of MVC (Maximal Voluntary Contraction). We found the ERS (Event-Related Synchronization)/ERD (Event-Related Desynchronization) at the measured EEG data using STFT (Short-Time Furier Transform) and spectral power in the EEG of each frequency range displayed in the graph. In this paper, we identified that the stronger we contracted, the greater the spectral power was increased in the ${\beta}$, ${\gamma}$ wave.
본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 $\beta$파(14-26 Hz)와 $\mu$파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상 하 좌 우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.
본 논문에서는 피험자가 A, B, C, D 글자를 말하는 상상을 할 때 사고중추에서와 Broca's area 에서 EEG 신호를 측정하였으며 이 신호를 Event-Related Spectral Perturbation (ERSP), Inter-Trial Coherence (ITC) 그리고 Event Related Potential (ERP) 방법을 통해 분석하여 보았다. 그 결과 F7, FT7 영역의 뇌파에서 각 문자를 보여주는 자극 제시 후 0$\sim$300ms 동안의 1$\sim$13Hz에서 높은 coherence를 보였으며, P300 이 뚜렷하게 나타나는 것을 확인할 수 있었다. 하지만 ERP를 통해 분석해본 결과 각 글자에 대한 차이를 구분하고자 하였던 처음 연구의 동기와 달리 각 글자를 말할 때 ERP가 약간의 차이를 보이기는 하였으나 각 문자에 대한 차이라거나 이 차이를 통해 문자를 구별할 수 있다고 하기는 어려웠다. 하지만 본 논문에서는 이 실험결과를 통해 기존에 운동관련 뇌 영역에 국한되어 있던 BCI 연구의 한계를 극복하고 보다 다양한 서비스를 제공할 수 있는 응용 시스템을 제안하였다.
Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.