• Title/Summary/Keyword: Event Mean Concentration (EMC)

Search Result 96, Processing Time 0.035 seconds

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

Determination of CSOs Treatment Capacity considering the Pollution Load (오염부하량을 고려한 월류수 처리시설 규모 결정)

  • Kim, Joong Hoon;Yoo, Do Geun;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3270-3278
    • /
    • 2014
  • Many researches has been conducted as extreme rainfall in hydrology and extreme rainfall analysis is not proper for determination of CSOs treatment capacity. In this study, runoff is calculated by tranformation from rainfall to runoff according to Interevent Time Definition. The capacity of sewage treatment plant is designed by 3 times of DWF(Dry Weather Flow) and the efficiency of present sewage treatment plant is very low becauseat at present. Also, The sewage treatment plant can not control CSOs. In this research, the pollution load is calculated by EMC(Event Mean Concentration) and pollution concetration of total runoff is a standard deciding suitablility of present sewage treatment plant. Finally, CSOs treatment capacity is determinated considering pollution load.

Runoff Characteristics of Non-point Source Pollutants by Rainfall : Case Study with Pappy Field (강우시 비점오염물질의 유출 특성: 논을 대상으로)

  • Ju, So Hee;Park, Woon Ji;Shin, Jae Young;Lee, Su In;Choi, Joong Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.552-552
    • /
    • 2016
  • 논의 경우 다양한 영향인자에 의해 비점오염물질이 배출되기 때문에 유출특성을 파악하기가 어렵다. 따라서 본 연구의 목적은 논에서 발생하는 비점오염물질의 유출 특성에 대해 파악하여 추후 효율적인 농업비점오염 관리를 위한 기초자료를 제공하는데 있다. 연구 대상지점으로 춘천시에 위치한 논 1곳(면적: $11,130m^2$)을 선정하였으며. 2014년 5월부터 9월까지 총 11회(9회 유출)의 강우 사상에 대한 오염물질별 오염부하 및 유량가중평균농도(Event Mean Concentration, EMC)를 산정하였다. 모니터링기간 동안 발생된 강우량의 범위는 2.6~95.8 mm로 나타났으며, 선행무강우일수는 0.59~21.2일, 강우강도는 0.33~5.13 mm/hr의 범위로 나타났다. 총 유출량은 $0.16{\sim}497.3m^3$, 유출율은 0.01~0.47(평균 0.24)의 범위로 나타났다. 오염물질별 EMC는 SS 17.1~55.3 mg/L(평균 31.9 mg/L), BOD 1.9~9.7 mg/L(평균 4.2 mg/L), COD 3.6~18.9 mg/L(평균 8.3 mg/L), TOC 3.4~17.4(평균 6.4 mg/L) mg/L, T-N 1.64~7.17 mg/L (평균 3.79 mg/L), T-P 0.16~1.04 mg/L(평균 0.44 mg/L)의 범위로 나타났다. 각 강우사상에 대한 단위면적당 오염부하는 SS 0.005~19.56 kg/ha, $BOD_5$ 0.001~1.70 kg/ha, $COD_{Mn}$ 0.003~3.15 kg/ha, TOC 0.002~1.81 kg/ha, T-N 0.001~0.822 kg/ha, T-P 0.00003~0.115 kg/ha의 범위로 산정되었다. 논의 경우에는 초기유출 발생에 따른 오염부하의 급격한 변화가 없었고, 누적오염부하량비의 그래프도 강우사상의 기울기가 직선에 가깝게 나타났다. 하지만 지속적으로 오염물질을 배출하는 경향과 다양한 조건에 따라 배출양상이 달라지기 때문에 효과적인 관리를 하기 위해서 장기적인 모니터링 연구가 필요할 것으로 사료된다.

  • PDF

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(II): Focusing on the Outflow Characteristics of the C Industrial Complex by Rainfall Event (산업단지 비점오염원의 유출특성(II): C산업단지의 강우사상별 유출특성을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of calculating EMC according to the outflow amount by rainfall event, the 1st rainfall showed EMCs ranges of BOD, CODMn, SS, T-N, and T-P of 1.32~48.76, 3.32~43.75, 2.89~199.43, 2.76~8.93, 0.08~068, and the 2nd rainfall was 0.5~2.9, 2.71~7.13, 2.82~174.94, 1.33~4.03, 0.01~1.28 mg/L, respectively. As a result of calculating the ratio of cumulative outflow and cumulative pollution load, most of the pollution load was less than the rainfall outflow, but over time, the initial washing phenomenon occurred as the ratio of cumulative rainfall outflow and cumulative pollution load increased to more than 1.

Runoff Characteristics of Non-Point Source Pollutants in Storm Event -Case Study on the Upstream and Downstream of Kokseong River, Korea- (강우시 비점오염물질의 유출특성에 관한 연구 -곡성천 상.하류를 대상으로-)

  • Yang Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.418-434
    • /
    • 2006
  • The study was investigated to runoff characteristics of non-point pollutants according to rainfall in Kokseong river watershed. The result of which is as follows : First of all, major reason which affect the formation of water quality of Kokseong River is judged to be caused by non-point pollution source which flows out from farmland and residential area. Flow of rainfall effluent in the downstream in which direct flow components of urban district and combined sewer overflows of farmland was intervened faster than that in the upstream reacted more promptly. Generation of pollutants by non-point source shows increasing trend in general in accordance with the increase in the intensity of rainfall but it was affected by SS, BOD, COD and T-P in the upstream part whereas BOD, COD and T-N were significantly affected by beginning period of rainfall in the downstream. EMC in the downstream increased approximately 3-315 times as compared to upstream, particularly the discharge of SS5 and T-P were extremely increased. While surface flow out of rainfall effluent in the upstream was only 4.7%, the surface flow in the downstream took up as much as 29%, which was major reason for the increase of EMC. From the above contents, we can see that the change in water quality according to the increase and decrease of effluent at the time of rainfall showed very complex pattern depending on the type of land use, and it is judged that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

Estimation of Stream Water Quality Changes Brought by a New Town Development (신도시 개발 후 도시하천의 장래수질 평가)

  • Park, Ji-Young;Lim, Hyun-Man;Yoon, Young-Han;Jung, Jin-Hong;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Water pollution problems of urban rivers due to the urbanization and industrialization have been the subject of public attention. In particular, considering the fact that the characteristics of water cycle of each basin change dramatically through the development of new towns, a large number of concerns about future water quality have been raised. However, reasonable measures to predict future water quality quantitatively have not been presented by this moment. In this study, by the linkage of annual unit load generation based on long-term monitoring results of the ministry of environment (MOE) to a semi-distributed rainfall runoff model, SWMM (Storm Water Management Model), we proposed a new methodology to estimate future water quality macroscopically and testified it to verify its applicability for the estimation of future water quality of a small watershed at G new town. As a result of the estimation using Y-EMC (Yearly based Event Mean Concentration), future water quality were simulated as BOD 18.7, T-N 16.1 and T-P 0.85 mg/L respectively which could not achieve the grade III of domestic river life guidance and these criteria could be satisfied by the reduction of domestic wastewater discharge load by over 80%. The results of this study are shown to be utilized for one of basic tools to estimate and manage water quality of urban rivers in the course of new town developments.

Runoff Characteristics of Non-point Source Pollutant Loads Generated on Golf Course (골프장에서 발생하는 비점오염원 유출특성)

  • Shin, Minhwan;Choi, Jaewan;Choi, Younghun;Park, Woonji;Won, Chulhee;Shin, Dongsuk;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.784-793
    • /
    • 2011
  • Activities on golf courses are believed to contribute to the degradation of water quality in receiving waters due to the excessive use of farm chemicals including fertilizers and pesticides. The objective of this study was to collect basic data that could explain the characteristics of non-point source (NPS) pollution discharged from a golf course. Twenty seven water quality monitoring was conducted at a golf course during the rainy season of 2008 and 2009. The results indicated that the ranges of the Event Mean Concentration (EMC) at the golf course were $BOD_5$ 1.8~11.3 (ave. 5.6) mg/L, $COD_{Mn}$ 19.2~51.4 (ave. 39.6) mg/L, TOC 11.0~31.0 (ave. 16.8) mg/L, TN 1.545~16.098 (ave. 5.623) mg/L, TP 0.230~4.528 (ave. 1.525) mg/L, and SS 2.2~57.3 (ave. 10.1) mg/L. The unit loads of the golf course estimated were $BOD_5$ $3.35kg/km^2/day$, SS $6.43kg/km^2/day$, $COD_{Mn}$ $30.00kg/km^2/day$, TN $4.04kg/km^2/day$, TP $1.14kg/km^2/day$, and TOC $12.16kg/km^2/day$. Golf courses are currently classified as a grass field in which the unit loads are different from golf courses. Therefore, it was recommended that golf courses need to be separated from the grass field when the surveys and modelings for Total Maximum Daily Load (TMDL) development and the evaluation of TMDL implementation were performed.

Characteristics of stormwter runoff from highways with unit traffic volume (고속도로 자동차 통행량에 따른 강우유출수 유출 특성 분석)

  • Choi, Jiyeon;Hong, Jungsun;Kang, Heeman;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • This study was conducted to analyze the runoff characteristics of the highway depending on the number of vehicles and to provide the installation proposal of an NPS pollution reduction facility. There were a total of 5 monitoring sites used for the study namely, Gyeongbu, Seohaean, Honam and Tongyeoung Dageon highway. Monitoring events started from 2006 until 2015 having a total of 44 storm events. According to monitoring statistics, the average antecedent dry days (ADD) and rainfall was 6.2 days and 19.2 mm, respectively. The Gyeongbu Highway (H-4) was recorded having the highest Average Daily Traffic and Catchment Area (ADT/CA) with $49.4car/day{\cdot}m^2$ while other site were less than $10car/day{\cdot}m^2$. The average concentration of the NPS pollutants generated from monitoring sites were 63.5 mg/L(TSS), 24.9 mg/L(BOD), 3.35 mg/L(TN), 0.63 mg/L(TP) and 298 ug/L(Total Zn). This exhibited lower values in comparison to the remarks of highway related runoff EMC values published in Korea. Moreover, through the results of the correlation analysis between the contaminant concentration and ADT/CA, $R^2$ value of SS showed the highest correlation with 585. Through the correlation equation between ADT/CA and EMC of TSS, when there is 73.7 mg/L of TSS EMC found from a domestic highway, ADT/CA ratio is normally $13car/day{\cdot}m^2$. Therefore, in a case of more than 13 cars passing through a certain area, the area can be considered and present as the point of generation of nonpoint source pollutants. Also, in this study, since it considered a unit area ADT indicated in previous studies, it was determined that it has a high applicability and utilization in generalized units than conventional study which were conventionally done.

Characteristics of Non-Point Pollution from Road Surface Runoff

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.665-670
    • /
    • 2010
  • Pollutants from urban pavement consists various kinds of substances which are originated from dry deposition, a grind out tire, corrosive action of rain to pavement and facilities and raw materials of the road etc.. These are major pollutants of urban NPS (Non-point source) during rainfall period. However there is not enough information to control such pollutants for appropriate management of natural water quality. In this study of transportation areas, three monitoring stations were set up at trunk road, urban highway and national road in Gyeongnam province. Runoff flow rate was measured at every 15minutes by automatic flow meters installed at the end of storm sewer pipe within the road catchment area for water quality analysis. Data was collected every 15 minutes for initial two hours of rainfall. Additional samples were collected 1-4 hours interval till the end of rainfall. The monitoring parameters were $COD_{Mn}$, SS, T-N & T-P and heavy metals. The average EMCs of TSS and $COD_{Mn}$ were 62.0 mg/L and 24.2 mg/L on the city trunk road, which were higher than those of urban highway and national road, indicating higher pollutant loads due to activities in the city downtown area beside the vehicle. On the other hand, the average EMC of T-N and T-P were in the range of 2.67-3.23 mg/L and 0.19-3.21 mg/L for all the sampling sites. Heavy metals from the roads were mainly Fe, Zn, Cu and Mn, showing variable EMCs by the type of road. From the TSS wash-off analysis in terms of FF(first flush) index, first flush phenomenon was clearly observed in the trunk road(FF : 0.89-1.43). However, such mass delivery behavior was not apparently shown in urban highway(FF : 0.90-1.11) and national road(FF : 0.81-1.41).