• 제목/요약/키워드: Event Data Recorder

검색결과 36건 처리시간 0.021초

교통사고분석에서 EDR 기록정보의 채택에 관한 고찰 (Study on Adopting EDR Report for Traffic Accident Analysis)

  • 박종진;박정만;이연섭
    • 자동차안전학회지
    • /
    • 제12권3호
    • /
    • pp.52-60
    • /
    • 2020
  • Usage of EDR(Event Data Recorder) report for traffic accident analysis is currently increasing due to government regulation of EDR data release. Nevertheless, a lot of investigators simply adopt by comparing the number of ignition cycles(crash) at event to the number of ignition cycles(download) without an exact judgment whether event data occurred by this accident or not. In the EDR report, besides ignition cycles, there are many factors such as event record type, algorithm active(rear/rollover/side/frontal), time between events, event severity status(rollover/rear/right side/reft side/frontal), belt switch circuit status, driver/passenger pretensioner/air-bag deployment, PDOF(Principal Direction of Force) by ΔV to be able to decide whether or not to adopt. also the event data is considered enough to vehicle damaged state, accident situation at the scene of the accident. and there is described in "all data should be examined in conjunction with other available physical evidence from the vehicle and scene" in the CDR(Crash Data Retrieval) report. Therefore many investigators have to decide whether or not to adopt after they consider sufficiently to above factors when they are the traffic accident analysis and investigate the causes of a accident on the adopted event data. In this paper, we report to traffic accident investigators notable points and analysis methods on the basis of thousands of cases and the results of one's own experiment in NFS(National Forensic Service).

친환경 자동차의 급발진 원인 규명을 위한 EDR 저장 데이터 개선방안 연구 (A Study on the Improved EDR Storage Data to Identify the Cause of Unintended Acceleration of Eco-friendly Vehicles)

  • 이상배;김동한;문병준
    • 자동차안전학회지
    • /
    • 제14권3호
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we propose the improved EDR (Event Data Recorder) storage data, which can identify the cause of unintended acceleration of eco-friendly vehicles. The proposed EDR storage data includes the brake pressure sensor value and a brake pedal travel sensor value. To verify the proposed EDR storage data, we observe the control algorithm and internal structure of the vehicle dynamic control system and a regenerative braking system in an eco-friendly vehicle.

자율주행자동차 데이터 기록장치의 기록 조건 및 항목에 대한 방향성 연구 (A Study on the Direction of Data Triggers and Elements for Automated Vehicle Data Recorder)

  • 강희진;우나은;박기옥;송지현
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.71-78
    • /
    • 2023
  • This study presents the direction of data triggers and elements to be recorded in automated vehicles in the future in relation to the event data recorder (EDR) and data storage system for automated driving (DSSAD). It does not distinguish between the EDR and DSSAD, but suggests data triggers and elements in preparation for overall automated vehicle accidents and dangerous situations. To propose, the current status of discussions on EDR/DSSAD internationally and the case of investigating accidents with automated vehicles under temporary driving licenses in Korea were analyzed. Based on the analysis, the direction of data triggers and elements of the EDR/DSSAD of automated vehicles were presented.

사고기록장치 자료를 이용한 감속도 산출에 관한 연구 (A Study on the Calculation of Deceleration Using Event Data Recorder Data)

  • 김윤진;은주오;윤일수
    • 한국ITS학회 논문지
    • /
    • 제18권6호
    • /
    • pp.31-42
    • /
    • 2019
  • 사고기록장치(Event data recorder, EDR)에 기록된 운행정보 중 차량의 사고 이전 속도정보는 사고차량 운전자의 처벌, 가해자·피해자 구분, 사고회피 가능성 등을 결정하는 매우 중요한 요소이다. 또한 EDR 자료를 분석하면 사고차량의 감속도를 분석할 수 있다. 본 연구에서는 교통사고 분석에서 사고차량 운전자의 전방주의의무 이행 여부, 사고회피 가능성 등을 판단하는 주요요소인 정지거리 산출에 적용 가능한 적정 감속도 값을 제시하기 위하여 선행연구의 제동실험 결과와 교통사고차량의 EDR에서 추출한 자료를 분석한 결과를 비교하였다. 선행연구의 ABS 장착차량 제동실험을 분석 결과, 차량의 평균 감속도는 0.79g~0.94g로 나타났다. 또한 비교적 최근에 이루어진 교통안전공단 자동차 안전도평가 제동실험에서는 감속도 값이 0.92g~0.94g로 매우 높게 나타났다. 그리고, 본 연구에서 수행된 EDR 자료 분석을 통해서는 0.55g~0.71g의 감속도 값이 산출되었으며, 선행연구의 제동실험에서 측정된 감속도 값보다 작은 값이 나타났다.

사고기록장치의 기록 시점에 대한 사례연구 (Case Study on the Time Zero (T0) of Event Data Recorder)

  • 박종진;박정만;박정우;인병덕
    • 자동차안전학회지
    • /
    • 제15권2호
    • /
    • pp.35-41
    • /
    • 2023
  • On December 19, 2015, as Article 29-3 (Installation of Accident Recording Devices and Provision of Information) of Motor Vehicle Management Act came into force, In Korea, the EDR (Event Data Recorder) reports are often used for the analysis of various traffic accident cases such as multiple collisions, traffic insurance crimes, and sudden unintended acceleration (SUA), and the others. So many investigators have analyzed the driver's behavior and vehicle situation by comparing the time zero in the EDR report to the actual crash time in dash-cam (or CCTV). Time zero (T0) is defined as the reference time for the record interval or time interval when recording an accident in Article 56-2, Enforcement rule of Performance and Standard for Automobile and Automotive parts. Also in the EDR report, time zero (T0) is defined as whichever of the following occurs first; 1. "wake-up" by an air-bag control system, 2. Continuously running algorithms (by monitoring of longitudinal or lateral delta-V), 3. Deployment of a non-reversible deployment restraint. We have already proposed the "Flowchart & Checklist" to adopt the EDR report for traffic accident investigation and the necessity of specialized institutions or courses to systematically educate or analyze the EDR data. Therefore, in this paper, we report to traffic accident investigators notable points and analysis methods based on some real-world traffic accidents that can be misjudged in specifying time zero (T0).

국과수 데이터베이스를 활용하여 자율주행차 사고조사 가이드라인 개발을 위한 교통사고 유형 분류 및 특성 분석 연구 (Traffic Accident Type Classification and Characteristic Analysis Research to Develop Autonomous Vehicle Accident Investigation Guidelines Using the National Forensic Service Data Base)

  • 인병덕;박다영;박종진
    • 자동차안전학회지
    • /
    • 제16권1호
    • /
    • pp.35-41
    • /
    • 2024
  • In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.

고속전철용 고장기록장치 시스템 설계에 관한 연구 (The design concept of the event recorder system for high speed train)

  • 최권희;전성현;정병호;이병석;한동인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.72-76
    • /
    • 2005
  • This event recorder system, owing to the advancement of communication technology, is independently installed in most on-board electronics and given integrated management by on-board monitoring equipments. However, since the safety oriented equipments such as signalling devices, train protection systems, and train radios have been mounted on trains recently" the existing on-board monitoring device is no longer reliable enough for permanent preservation of data from train crashes or fires. This study has pointed out the problems mentioned above and described the designing concept of the fault recording system for high-speed trains for effective utilization of the train management program.

  • PDF

RTOS 기반 무선랜 장치가 연결된 영상기록저장장치의 Progressive Download 방식 영상전송 기술 개발 (Development of Progressive Download Video Transmission EDR based RTOS on Wireless LAN)

  • 남의석
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1792-1798
    • /
    • 2017
  • Event Data Recorder(Car Black-Box) with WiFi dongle have been released, and the platform of the majority is the Linux platform. This is because the platform development is possible in little investment cost by reducing the source licensing costs by taking advantage of the open source. But utilizing Linux platform has the limitations of boot-up time and consuming processing power due to the limitation of battery capacity, to be cost-competitive to minimize the use of memory. In this paper, the real-time operating system(RTOS) is utilized to optimize these portions. MP4 encoder and Muxer are developed to be about ten seconds boot up and minimized memory. It has the advantages of operating at lower power consumption than the Linux utilizing WiFi dongle. Utilizing a WiFi dongle is to provide a progressive download feature on smart phones to lower product prices. But RTOS has the weakness in WiFi. Porting TCP /IP, Web and DHCP server and combination with the USB OTG Host interface by implementing the protocol stack are developed for WiFi. And also SPI NOR flash memory is utilized for faster boot time and cost reductions, low processing power to be consume. As the results, the developed proved the 10 seconds booting time, 24 frame rate/sec. and 10% lower power consumption.

크랩랜딩(Crab Landing) QAR(Quick Access Recorder) 비행 데이터 통계분석 모델 (Crab Landing QAR (Quick Access Recorder) Flight Data Statistical Analysis Model)

  • 전제형;김현덕
    • 한국항행학회논문지
    • /
    • 제28권2호
    • /
    • pp.185-192
    • /
    • 2024
  • 항공산업은 기술적인 혁신을 통해 안전성을 향상했으며, 항공 당국의 안전 규제와 감독을 통해 비행안전을 강화해 왔다. 항공산업의 안전 접근 방식이 항공기 시스템 전체에 대한 체계적인 접근 방식으로 발전함으로써 항공사는 새로운 안전 관리시스템을 구축하게 되었다. 항공기의 기술적 결함이나 비정상적인 데이터는 사고로 이어질 수 있는 전조 징후가 될 수 있으며, 이러한 징후를 조기에 식별하고 대처함으로써 사고 발생의 위험을 감소시킬 수 있다. 따라서 비정상적인 전조 징후의 관리는 데이터 기반 의사결정을 촉진하고, 항공사의 운영 효율성 및 안전수준을 강화하는 데 있어 필수적인 요소이다. 본 연구에서는 항공기 착륙 시에 활주로 이탈로 이어질 수 있는 크랩랜딩 이벤트의 패턴과 원인 분석을 위한 사전적 분석 단계에서 QAR (quick access recorder) 비행 데이터 통계 분석 모델을 제시하여 착륙 이벤트의 전조 징후와 원인을 식별 및 제거하는 안전관리의 효율성을 제고하고자 한다.