• Title/Summary/Keyword: Event Code

Search Result 230, Processing Time 0.026 seconds

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

A Study on Detecting of an Anonymity Network and an Effective Counterstrategy in the Massive Network Environment (대용량 네트워크 환경에서 익명 네트워크 탐지 및 효과적 대응전략에 관한 연구)

  • Seo, Jung-woo;Lee, Sang-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.667-678
    • /
    • 2016
  • Due to a development of the cable/wireless network infra, the traffic as big as unable to compare with the past is being served through the internet, the traffic is increasing every year following the change of the network paradigm such as the object internet, especially the traffic of about 1.6 zettabyte is expected to be distributed through the network in 2018. As the network traffic increases, the performance of the security infra is developing together to deal with the bulk terabyte traffic in the security equipment, and is generating hundreds of thousands of security events every day such as hacking attempt and the malignant code. Efficiently analyzing and responding to an event on the attack attempt detected by various kinds of security equipment of company is one of very important assignments for providing a stable internet service. This study attempts to overcome the limit of study such as the detection of Tor network traffic using the existing low-latency by classifying the anonymous network by means of the suggested algorithm about the event detected in the security infra.

A Study on Implement of Smart Battery Management System using Embedded Processor (임베디드 프로세서를 이용한 스마트 배터리 관리 시스템 구현에 대한 연구)

  • Oh, Chang-Rok;Lee, Seong-Won
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.345-353
    • /
    • 2011
  • Recently portable mobile devices such as smart-phones and notebooks have rapidly increasing demands. Those devices consume more power because they are expected to offer more complex functionality including multimedia features. For these reasons engineering efforts are changing to focus on maximizing energy efficiency within a limited battery capacity instead of increasing computational performance. In this paper, we propose a battery management system using event driven programming technique on a embedded processor. We also show that the proposed system satisfies SBS (Smart Battery Specification) v1.1. The proposed system maintains minimum code size and memory size comparing to those of RTOSs. The proposed system can be also easily incorporated in the conventional RTOSs as a form of firmware.

Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000 (OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석)

  • Song, Jun Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.

A study to detect and leaked personal information on the smartphone. (스마트폰 상에서의 개인정보 유출 탐지 모니터링 연구)

  • Kim, Wung-Jun;Park, Sang-Hwi;Park, Sang-No;Kim, Chang-Su;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.606-608
    • /
    • 2014
  • Recent smartphone users constantly increases, an increase in malicious applications smartphones indiscretions exists within the Terminal, through the deployment of privacy disclosure, Singh and other victims also are on the rise. A typical personal way to malicious code masquerading as a normal application and install it on the handset of my text message or a personal note, such as personal information, the certificate directory, is the way that leaked. Therefore, to obtain permission to attack the root Terminal event by collecting malware infections and respond to determine whether it is necessary for the technique. In this paper, check the features of a Smartphone in real time systems, to carry out a study on the application throughout the Terminal to collect my attack event analysis, malware infection can determine whether or not the mobile security monitoring system. This prevents a user's personal information and take advantage of the top and spill are expected to be on the field.

  • PDF

Design of Intelligent Intrusion Context-aware Inference System for Active Detection and Response (능동적 탐지 대응을 위한 지능적 침입 상황 인식 추론 시스템 설계)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.126-132
    • /
    • 2022
  • At present, due to the rapid spread of smartphones and activation of IoT, malicious codes are disseminated using SNS, or intelligent intrusions such as intelligent APT and ransomware are in progress. The damage caused by the intelligent intrusion is also becoming more consequential, threatening, and emergent than the previous intrusion. Therefore, in this paper, we propose an intelligent intrusion situation-aware reasoning system to detect transgression behavior made by such intelligent malicious code. The proposed system was used to detect and respond to various intelligent intrusions at an early stage. The anticipated system is composed of an event monitor, event manager, situation manager, response manager, and database, and through close interaction between each component, it identifies the previously recognized intrusive behavior and learns about the new invasive activities. It was detected through the function to improve the performance of the inference device. In addition, it was found that the proposed system detects and responds to intelligent intrusions through the state of detecting ransomware, which is an intelligent intrusion type.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

An Investigation of Fluid Mixing with Direct Vessel Injection (직접용기주입에 따른 유체혼합에 관한 연구)

  • Cha, Jong-Hee;Jun, Hyung-Gil
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.63-77
    • /
    • 1994
  • The objective of this work is to investigate fluid mixing phenomena related to pressurized thermal shock(PTS) in a pressurized water reactor(PWR) vessel downcomer during transient cooldown with direct vessel injection(DVI) using test models. The test model designs were based on ABB Combustion Engineering(C-E) System 80+ reactor geometry. A cold leg small break loss-of-coolant accident(LOCA) md a main steam line teak were selected as the potential PTS events for the C-E System 80+. This work consist of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluid and existing coolant in the downcomer region, and the second part is to compare the results of thermal mixing tests with DVI in the other test model. Row visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small break LOCA Measured transient temperature profiles agree well with the predictions by the REMIX code for a small break LOCA and with the calculations by the COMMIX-1B code for a steam line break event.

  • PDF

Vocabulary Definition for Describing Business Process Events of International Logistics on EPCIS (EPCIS 국제물류 비즈니스 프로세스 이벤트 기술을 위한 어휘 정의)

  • Lee, Sun-Young;Bae, Woo-Sik;Lee, Jong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.334-344
    • /
    • 2009
  • The EPCglobal Network is a system which provides the information of items to suppliers, consumers, and customers by granting identification numbers on the goods based on the technologies of EPC(Electronic Product Code) and RFID(Radio Frequency Identification), and connecting the space to store those information by network. The EPCglobal architecture framework is also a service consolidating supply and process chain by using EPC for the common goal of business corporations. In the national level, it is necessary to define standard vocabularies for each location and logistics business process for RFID environment using the pre-constructed logistics information infrastructure. Therefore, we define the standard vocabularies and partially user vocabularies for international logistics on EPCglobal network architecture. Finally, we believe that our vocabularies contribute to describing the events fur the EPCglobal network architecture and actually providing usable platform via the XML implementation.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.