• 제목/요약/키워드: Evapotranspiration index

Search Result 153, Processing Time 0.03 seconds

Computation of Actual Evapotranspiration using Drone-based Remotely Sensed Information: Preliminary Test for a Drought Index (드론 원격정보를 활용한 실제증발산량의 산정: 가뭄지수를 위한 사전테스트)

  • Lee, Geun-Sang;Kim, Sung-Wook;Hamm, Se-Yeong;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1653-1660
    • /
    • 2016
  • Drought is a reoccurring worldwide natural hazard that affects not only food production but also economics, health, and infrastructure. Drought monitoring is usually performed with precipitation-based indices without consideration of the actual state and amount of the land surface properties. A drought index based on the actual evapotranspiration can overcome these shortcomings. The severity of a drought can be quantified by making a spatial map. The procedure for estimating actual evapotranspiration is costly and complicated, and requires land surface information. The possibility of utilizing drone-driven remotely sensed data for actual evapotranspiration estimation was analyzed in this study. A drone collected data was used to calculate the normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI). The spatial resolution was 10 m with a grid of $404{\times}395$. The collected data were applied and parameterized to an actual evapotranspiration estimation. The result shows that drone-based data is useful for estimating actual evapotranspiration and the corresponding drought indices.

Regional Scale Evapotranspiration Mapping using Landsat 7 ETM+ Land Surface Temperature and NDVI Space (Landsat ETM+영상의 지표면온도와 NDVI 공간을 이용한 광역 증발산량의 도면화)

  • Na, Sang-Il;Park, Jong-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.115-123
    • /
    • 2008
  • Evapotranspiration mapping using both meteorological ground-based measurements and satellite-derived information has been widely studied during the last few decades and various methods have been developed for this purpose. It is significant and necessary to estimate regional evapotranspiration (ET) distribution in the hydrology and water resource research. The study focused on analyzing the surface ET of Chungbuk region using Landsat 7 ETM imagery. For this process, we estimated the regional daily evapotranspiration on May 8, 2000. The estimation of surface evapotranspiration is based on the relationship between Temperature Vegetation Dryness Index (TVDI) and Morton's actual ET. TVDI is the relational expression between Normalized Difference of Vegetation Index (NDVI) and Land Surface Temperature (LST). The distribution of NDVI corresponds well with that of land-use/land cover in Chungbuk. The LST of several part of city in Chungbuk region is higher in comparison with the averaged LST. And TVDI corresponds too well with that of land cover/land use in Chungbuk region. The low evapotranspiration availability is distinguished over the large city like Cheongju-si, Chungju-si and the difference of evapotranspiration availability on forest and paddy is high.

Using Leaf Temperature for Irrigation Scheduling in Greenhouse (온실작물의 관개계획의 수립을 위한 엽온의 활용)

  • 이남호;이훈선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.103-112
    • /
    • 2001
  • The development of infrared thermometry has led many researchers to use plant temperatures, and specifically the temperature of the crop canopy in the field, for estimating the water stress of a crop. The purpose of this study was to evaluate the role of leaf temperature in irrigation scheduling. An experiment was carried out in a greenhouse with chinese cabbage. Leaf temperature was measured with infrared thermometry and evapotranspiration of the crop was measured by lysimeters. Influence of the difference between leaf temperature and air temperature on crop evapotranspiration was evaluated under varying water stress condition. A further objective was to evaluate the effect of other climatic variables on the relationship between evapotranspiration and temperature difference between leaf and air. A statistical model for estimating evapotranspiration using the temperature difference, relative humidity. and radiation was developed and tested. Crop water stress index was calculated using vapour pressure deficit and the temperature difference. Relations between the crop water stress index and crop evapotranspiration was tested. The index was closely related with evapotranspiration.

  • PDF

Impact of Climate Change on Variation of the Aridity and Evaporative Indexes in South Korea

  • Ha, Doan Thi Thu;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.146-146
    • /
    • 2019
  • The aridity index, which is determined as the ratio of potential evapotranspiration to precipitation, is one of key parameters in drought characterization. Whereas the evaporative index, which is defined as the ratio of actual evapotranspiration to precipitation, represents the fraction of available water consumed by the evapotranspiration process. This study investigates variation of the aridity and evaporative indexes due to climate change during the 21st century in South Korea. Estimations of the aridity and evaporative indexes are obtained using SWAT mode based on ensemble of 13 different GCMs over 5 large basins of South Korea for 2 RCP scenarios (RCP 4.5 and RCP 8.5). The results shows the opposite trends of the two indexes, where the aridity index is projected as always increase, while the evaporative index is expected to decrease in all of 3 future period (2011-1940, 1941-1970, 1971-2099). The estimated results also suggest that land cover influenced significantly evapotranspiration along with the change of climate. The study indicates that South Korea will be facing with a high risk of water scarcity in future due to climate change, which is seriously challenging for water planing and management in the country.

  • PDF

Probable Evapotranspiration of Paddy Rice using Dry Day Index

  • 장하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.72-78
    • /
    • 1995
  • To support some knowledge in planning irrigation system, short or long-term irrigation scheduling or determining irrigation reservoir capacity, it is necessary to estimate peak irrigation requirements and seasonal distribution of water demands for various return periods. In this paper Dry Day Index and Probable Evapotranspiration were evaluated to decide seasonal consumptive use of paddy rice for a design year using several decades' daily rainfall data and 5 years'('82~'86) actual evapotranspiration data, respectively. To obtain Dry Day Index that is defined as the number of probable dry days for a given period, Slade unsymmetrical distribution function was adopted. Dry Day Index was analysed for 5 and 10-day intervals. Each of them was evaluated with return periods of 1, 3, 5, 10 and 20 year. Their singnificance was tested by X$^2$ method. Based on these values, the Probable Evaportanspiration, that is the average daily ET both in dry days and rainy days during a given period, was estimated. Crop coefficient was also determined by the modified Penman equation proposed by Doorenbos & Pruitt.

  • PDF

Climate Aridity/humidity Characteristics in Seoul According to Changes in Temperature and Precipitation Based on RCP 4.5 and 8.5 (RCP 4.5와 8.5에 따른 기온 및 강수량변화를 반영한 서울 기후 건조/습윤특성)

  • Rim, Chang-Soo;Kim, Seong-Yeop
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.421-433
    • /
    • 2014
  • In this study, monthly and annual aridity indices which are the ratios of precipitation to potential evapotranspiration in Seoul climate measurement station were analyzed for past 50 years (1961~2010), and the ratio of aridity index simulated by climate change scenarios (RCP 4.5 and 8.5) for each future period (2011~2040, 2041~2070, 2071~2100) to aridity index for the past period (1971~2000) was analyzed. Furthermore, 5 different potential evapotranspiration equations (FAO P-M, Penman, Makkink, Priestley-Taylor, Hargreaves) were applied to analyze the effect of potential evapotranspiration equation on estimating aridity index and aridity index variation ratio (%). The study results indicate that the monthly precipitation, average temperature and potential evapotranspiration were increased in each future period as compared to past period for both RCP 4.5 and RCP 8.5. Furthermore, winter period showed more significant increase of potential evapotranspiration than summer period, but aridity index showed different patterns as compared with potential evapotranspiration reflecting the influence of precipitation. Therefore, it is necessary to make preparation for the increment of winter evapotranspiration in terms of water resources management. The monthly and annual aridity indices based on future climate change scenarios were greatly different according to potential evapotranspiration equations; however, monthly and annual patterns of aridity index variation ratio (%) in the future period as compared to past period were very similar regardless of applied potential evapotranspiration equation.

Estimation of evapotranspiration using NOAA-AVHRR data (NOAA-AVHRR data를 이용한 증발산량추정)

  • Shin, Sha-Chul;Sawamoto, Masaki;Kim, Chi-Hong
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 1995
  • The purpose of this study is to estimate evapotranspiration and its spatial distribution using NOAA-AVHRR data. Evapotranspiration phenomena are exceedingly complex. But, factors which control evapotranspiration can be considered that these are reflected by conditions of the vegetation. To evaluate the vegetation condition as a fixed quantity, the NDVI(Normalized Difference Vegetation Index) calculated from NOAA data is utilized. In this study, land cover classification of the Korean peninsula using property of NDVI is performed. Also, from the relationship between evapotranspiration and NDVI histograms, evapotranspiration and its distribution of the Han River basin are estimated.

  • PDF

Distribution of Relative Evapotranspiration Availability using Satellite Data in Daegu Metropolitan (위성 자료를 이용한 대구광역시의 상대적 증발산 효율 분포)

  • Kim, Hae-Dong;Im, Jin-Wook;Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • Surface evapotranspiration is one of the most important factors to determine the surface energy budget, and its estimation is strongly related with the accuracy of weather forecasting. Surface evapotranspiration over Daegu Metropolitan was estimated using high resolution LANDSAT TM data. The estimation of surface evapotranspiration is based on the relationship between surface radiative temperature and vegetation index provided by a TM sensor. The distribution of NDVI (Normalized Difference of Vegetation Index) corresponds well with that of land-used in Deagu Metropolitan. The temperature of several part of downtown in Deagu metropolitan is lower in comparison with the averaged radiative temperature. This is caused by the high evapotranspiration from dense vegetation like DooRyu Park in Deagu Metropolitan. But, weak evapotranspiration availability is distinguished over the central part of downtown and the difference of evapotranspiration availability on industrial complexes and residential area is also clear.

A drought assessment using the generalized complementary principle of evapotranspiration (증발산 상호보완이론을 이용한 가뭄해석)

  • Chun, Jong Ahn;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.325-335
    • /
    • 2019
  • To characterize historical droughts in the conterminous United States (CONUS), we estimated the actual evapotranspiration ($ET_a$) in the CONUS using the generalized complementary relationship (GCR) for 1895-2016. The $ET_a$ estimates were compared against simulations from the Noah land surface model (LSM). In this study, the evapotranspiration (ET) deficit defined as the difference between the wet-environment ET ($ET_w$) and $ET_a$ was then normalized to calculate the Standardized Evapotranspiration Deficit Index (SEDI) across the CONUS for the years 1895-2016. The SEDI was compared to the Standard Precipitation Index (SPI) at various time scales. The results showed that the GCR $ET_a$ was slightly higher than the Noah LSM-simualted $ET_a$. As time scales increased, the correlation between the SEDI and the SPI was higher. This study suggests that the GCR has promise as a tool in the estimation of $ET_a$ and SEDI can be useful for the drought characterization.

Comparative Analysis of the 2022 Southern Agricultural Drought Using Evapotranspiration-Based ESI and EDDI (증발산 기반 ESI와 EDDI를 활용한 2022년 남부지역의 농업 가뭄 분석)

  • Park, Gwang-Su;Nam, Won-Ho;Lee, Hee-Jin;Sur, Chanyang;Ha, Tae-Hyun;Jo, Young-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.25-37
    • /
    • 2024
  • Global warming-induced drought inflicts significant socio-economic and environmental damage. In Korea, the persistent drought in the southern region since 2022 has severely affected water supplies, agriculture, forests, and ecosystems due to uneven precipitation distribution. To effectively prepare for and mitigate such impacts, it is imperative to develop proactive measures supported by early monitoring systems. In this study, we analyzed the spatiotemporal changes of multiple evapotranspiration-based drought indices, focusing on the flash drought event in the southern region in 2022. The indices included the Evaporative Demand Drought Index (EDDI), Standardized Precipitation Evapotranspiration Index (SPEI) considering precipitation and temperature, and the Evaporative Stress Index (ESI) based on satellite images. The Standardized Precipitation Index (SPI) and SPEI indices utilized temperature and precipitation data from meteorological observation stations, while the ESI index was based on satellite image data provided by the MODIS sensor on the Terra satellite. Additionally, we utilized the Evaporative Demand Drought Index (EDDI) provided by the North Oceanic and Atmospheric Administration (NOAA) as a supplementary index to ESI, enabling us to perform more effective drought monitoring. We compared the degree and extent of drought in the southern region through four drought indices, and analyzed the causes and effects of drought from various perspectives. Findings indicate that the ESI is more sensitive in detecting the timing and scope of drought, aligning closely with observed drought trends.