• 제목/요약/키워드: Evaporation cooling

검색결과 177건 처리시간 0.02초

분무 증발을 이용한 칩 냉각 향상에 대한 수치적 연구 (NUMERICAL STUDY OF CHIP COOLING ENHANCEMENT WITH EVAPORATING MIST FLOW)

  • 노상은;김동철;손기헌
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.9-16
    • /
    • 2013
  • The heat transfer enhancement of heat sink with mist flow is studied numerically by solving the conservation equations for mass, momentum and energy in the continuous and dispersed phases. A Lagrangian method is used for tracing dispersed water droplets in the heat sink and an Eulerian species transport model for air and steam mixture. The continuous and dispersed phases are interacted with the drag and evaporation source terms. The computed results show that addition of evaporating mist droplets enhances the cooling performance of heat sink significantly.

대형 저압 증발식 조수기 개발 (A Development Study on the Evaporation Type Large Fresh Water Generator)

  • 김병덕;송치성;김경근;김종헌;김용모
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.1-12
    • /
    • 1994
  • Most merchant ships are supplied with the only essential fresh water from a port for economical cargo transportation and the reduction of a nevigation expense. And the deficient fresh water for a voyage is produced by fresh water generator with the various exhaust energy generated in the engine room on a voyage. At present, an evaporation type fresh water generator are extensively used on ship because the operating cost of it is lower than that of a reverse osmosis pressure type. This study introduce a development results on the large evaporation type fresh water generator enable to be used for large merchant ships. It is accomplished the performance test using the developed large fresh water generator.

  • PDF

CO2 히트펌프용 단열 모세관 길이 예측에 관한 연구 (Prediction of Adiabatic Capillary Tube Length of Heat Pump Using Carbon Dioxide)

  • 오후규;최광환;전민주;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.576-581
    • /
    • 2011
  • 본 논문은 $CO_2$ 히트펌프용 모세관의 기초 설계자료를 제공하기 위해서 모세관 길이 예측에 대해서 이론 및 실험적으로 조사하였다. 본 연구에서 고려된 작동변수로는 증발온도, 가스냉각기 냉각압력, 냉매유량, 모세관의 관경 등이다. 몇몇 연구자들의 자료를 바탕으로 $CO_2$ 모세관 길이를 예측할 수 있는 수학적 모델식을 작성하였다. 그리고 단열 모세관 팽창장치내 $CO_2$의 증발온도, 냉매유량, 냉각압력 등에 대해서 실험한 결과, 이들 모두는 식 (3)으로 예측한 값과 0.63~10.9%이내에서 좋은 일치를 보였다. 따라 서 본 연구에서는 $CO_2$ 열펌프 단열 모세관에 대한 기초설계 자료로서, 냉각압력, 증발온도, 모세관 직경, 냉매유량 등의 조건으로부터 모세관 길이를 계산해낼 수 있는 예측 상관식을 제안하였다.

증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구 (Performance of Heat Recovery System using Evaporative Cooling)

  • 유성연;김태호;김명호
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.37-43
    • /
    • 2015
  • 현열 뿐만 아니라 잠열을 이용하는 증발냉각은 배기열 회수에 매우 유용하게 사용될 수 있다. 본 연구의 목적은 증발냉각을 이용한 배기열 회수장치의 성능을 실험적으로 규명하는 것이다. 성능실험장치는 플라스틱 열교환기, 물 분무 노즐, 공기유동용 홴, 물 순환용 펌프, 수조, 온도 습도 유량 측정 센서 등으로 구성되었다. 증발이 없는 현열 회수에서의 유용도와 증발을 수반하는 전열 회수에서의 유용도를 여러가지 작동조건에서 측정하여 비교하였다. 현열냉각과 증발냉각의 유용도는 공기의 유량이 증가함에 따라 감소하고, 대향류에서의 유용도가 평행류에서의 유용도 보다 휠씬 높다. 증발냉각의 경우 물 유량이 증가함에 따라 유용도는 증가하고, 평행류가 대향류보다 물 유량에 더 민감함을 알 수 있다.

건물 냉방시스템의 예측제어를 위한 인공신경망 모델 개발 (Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems)

  • 강인성;양영권;이효은;박진철;문진우
    • KIEAE Journal
    • /
    • 제17권5호
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.

태양열 이용 소용량 제습냉방시스템 (Small-Capacity Solar Cooling System by Desiccant Cooling Technology)

  • 이대영;권치호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

반도체 식각 공정용 초저온 냉각 시스템 설계를 위한 비가연성 혼합냉매 응축 및 비등 열전달 계수 측정 (Measurement of Condensation and Boiling Heat Transfer Coefficients of Non-flammable Mixed Refrigerant for Design of Cryogenic Cooling System for Semiconductor Etching Process)

  • 이천규;이정길
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.119-124
    • /
    • 2023
  • In this study, experimental approach of the measurement of condensation and evaporation heat transfer coefficients is discussed for mixed refrigerants using in the ultra low-temperature cooling system for semiconductor etching process. An experimental apparatus was described performing the condensation and evaporation heat transfer measurements for mixed refrigerants. The mixed refrigerant used in this study was composed of the optimal mixture determined in previous research, with a composition of Ar:R14:R23:R218 = 0.15:0.4:0.15:0.3. The experiments were conducted over a temperature range from -82℃ to 15℃ and at pressures ranging from 18.5 bar to 5 bar. The convection heat transfer coefficients of the mixed refrigerant were measured at flow rates corresponding to actual operating conditions. The condensation heat transfer coefficient ranged from approximately 0.7 to 0.9 kW/m2K, while the evaporation heat transfer coefficient ranged from 1.0 to 1.7 kW/m2K. The detailed discussion of the experimental methods, procedures, and results were described in this paper.

  • PDF

저온진공기술을 이용한 예냉 및 해동 겸용장치에 관한 연구 (A Study on the Combined Equipment for the Pre-cooling and the Thawing using the Low Temperature Vacuum System)

  • 김성규;박영승;최현규;이정혜;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.280-288
    • /
    • 2003
  • We need refrigeration system which can maintain the freshness of agricultural products, because of being distance from a tiller to a consumer. Vacuum Pre-cooling system has an advantage in quality maintenance through vapid cooling down by using latent heat of evaporation of stored products. A number or thawing methods in current use have also several disadvantages in thawing time. discoloration mass loss caused by drying, capital costs and running cost. These damages are, it is claimed, either eliminated or improved by the vacuum thawing system. An experimental study on the pre-cooling for the bean sprouts and cabbage, and thawing for hairtail and croaker by the low temperature vacuum system were carried out. The cabbage cooling time with this Pre-cooling vacuum system took about 60 minutes to reach from $23.2^{circ}C to 4.5^{\circ}C$ at 5 mmHg abs. ($6.66\times10^{-4}$ MPa). The croaker thawing time with this low temperature vacuum thawing system took about 170 minutes to reach from $-10.3^{circ}C to -0.8^{\circ}C$ at 20 mmHg abs ($2.67\tiems10^{-3}$MPa). The vacuum Pre-cooling and thawing system have merits compared with present systems in their short intervals to cool down and to thaw without any quality losses.

하절기 유리온실의 증발냉각 설계기준을 위한 VETH 선도 연구 (Studies of VETH Plot for Standard Design of Evaporative Cooling at Summer Glasshouse)

  • 우영회;안율균;김동억
    • 현장농수산연구지
    • /
    • 제20권1호
    • /
    • pp.55-66
    • /
    • 2018
  • 하절기 하우스 온도환경의 효율적 제어는 온실의 주년재배와 고도 활용을 위한 가장 중요한 당면과제이다. 본 연구는 여름철 지역별 하우스 증발냉각을 위한 설계 기준안으로서 9개 지역(서울, 서산, 대전, 부산, 제주, 광주, 대구, 전주, 진주)의 VETH 선도를 작성하여 제시하였다.

강원도 정선군 운치리 얼음골의 여름철 결빙현상에 관한 연구 (On Study of Summertime Ice Formation in the Ice Valley at Unchiri, Gangwon-Province)

  • 전병일
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.857-863
    • /
    • 2002
  • The meteorological elements were measured to investigate cause of summertime ice formation at Unchiri, Gangwon Province. The cause of freezing at valley was conformed as adiabatic expansion theory, latent heat of evaporation, natural convective theory, cold air remain theory, and convective freezing theory according to former study. However nither theory produced a satisfactory explanation. This studying area is not valley but ridge, and underground water surface exists at below than freezing height. wintertime temperature drop and summertime cold air spouting were explain as natural convective theory, generation of water drop on the rock was explained as cooling theory by air expansion, and ice formation on the rock was explained as adiabatic expansion theory. In conclusion, formation of ice valley at Unchiri was formed by natural convective theory, adiabatic expansion theory, and latent heat of evaporation successively.