• Title/Summary/Keyword: Evaporation Rate

Search Result 730, Processing Time 0.033 seconds

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

A Study on the Evaporation Behavior of Magnesium Alloy (AM50) Scrap Melt under Reduced Pressure (감압 하에서 마그네슘 합금(AM50) 스크랩 용탕의 증발 거동에 관한 연구)

  • Wi, Chang-Hyun;Hong, Seong-Hun;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.241-247
    • /
    • 2010
  • In order to develop the vacuum distillation process of magnesium alloy scrap, a fundamental study on the evaporation behavior of magnesium alloy (AM50) scrap melt was carried out. Melt temperature, pressure, reaction time, and initial specific surface area of melt were considered as experimental variables. The evaporation rate of magnesium increased with the increase of melt temperature and initial specific surface area of melt, and with the decrease of the pressure. The activation energy of magnesium evaporation reaction calculated by an Arrhenius plot decreased with the decrease of the pressure and with the increase of the initial specific surface area of melt. An empirical equation was derived for the evaporation rate of magnesium from AM50 alloy melt.

Effect of Heating Medium and Evaporation Temperatures on Concentration of Garlic Juice (가열 매체 및 증발온도가 마늘즙의 농축에 미치는 영향)

  • Kim, Byeong-Sam;Park, Noh-Hyun;Park, Moo-Hyun;Han, Bong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.301-305
    • /
    • 1992
  • Effect of heating medium and evaporation temperatures on a concentration ratio, a evaporation rate and a overall heat transfer coefficient during concentration of garlic juice by a centrifugal thin film evaporator were investigated. At constant feeding rate and evaporation temperature, the concentration ratio, the evaporation rate and the overall heat transfer coefficient increased with the increase of the steam temperature but those values increased slowly or decreased as a steam temperature exceeded $110^{\circ}C$. At the feeding rate of 50 kg/h and the steam temperature of $100^{\circ}C$ and below, those values decreased with the increase of evaporation temperature. But if a steam temperature became $100^{\circ}C$ and up, those values increased slowly and then decreased with the increase of the evaporation temperature until the evaporation temperature reached a critical value. At constant feeding rate, those values increased until the temperature difference between steam and evaporation temperatures became $70^{\circ}C$. But if they become larger than $70^{\circ}C$, those values increased slowly and then decreased.

  • PDF

Molecular Dynamics Study on Evaporation Process of Adherent Molecules on Surface by High Temperature Gas

  • Yang, Young-Joon;Osamu Kadosaka;Masahiko Shibahara;Masashi Katsuki;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2104-2113
    • /
    • 2004
  • Surface degreasing method with premixed flame is proposed as the removal method of adherent impurities on materials. Effects of adherent molecular thickness and surface potential energy on evaporation rate of adherent molecules and molecular evaporation mechanism were investigated and discussed in the present study. Evaporation processes of adherent molecules on surface molecules were simulated by the molecular dynamics method to understand thermal phenomena on evaporation processes of adherent molecules by using high temperature gas like burnt gas. The calculation system was composed of a high temperature gas region, an adherent molecular region and a surface molecular region. Both the thickness of adherent molecules and potential parameters affceted the evaporation rate of adherent molecules and evaporation mechanism in molecular scale.

Evaporation Rate of Lead in Molten Copper Alloy by Gas Injection (가스취입에 의한 용융 동 합금 중 납의 증발속도)

  • Kim, Hang-Su;Jeong, Seong-Yeop;Jeong, U-Gwang;Yun, Ui-Han;Son, Ho-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • The lead has to be removed for the recycling of copper alloy. The lead cannot be removed from the copper alloy by oxidation. It can be removed by the evaporation because of its high vapor pressure. However, rare information is found on removal of lead from copper alloy. The purpose of present work is to provide a fundamental knowledges on the removal of lead from the copper alloy by evaporation. Gas injection was made in molten copper alloy, and the evaporation rate of lead was measured. The influence of Ar gas flow rata(2~4 L/min), initial contents of lead(2~4wt%Pb), temperature(1200~140$0^{\circ}C$) was investigated based on the thermodynamic and the kinetics. The rate constant is increased with increasing flow rate of Ar and temperature. Though amount of lead removed is increased with higher initial lead concentration, the rate constant is not changed significantly. The activation energy is estimated from the temperature dependence of the rate constant. Also removal of lead from the copper by adding chloride was made for the comparison.

Effect of acoustic wave on the evaporation/combustion of suspended droplet (음파가 고정액적의 증발/연소에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents the results of the experimental investigation on the effect of acoustic wave on the combustion of suspended A-1 jet fuel droplets in atmospheric pressure. Experimental results indicate that A-1 jet fuel droplet burning rate constants $k_c$ were independent of initial droplet size and the relative evaporation/burning-rate constant $k_{e'}k_c$(ratio of the acoustically disturbed evaporation/burning-rate constant to the undisturbed evaporation/burning-rate constant) increased remarkably 1.2~1.51times, 1.04~1.42times, for frequency below 100Hz, and sound pressure level above 80dB.

Analysis of PDP Discharging Properties Depending on Electron Beam Evaporation Rate of MgO Layer (MgO의 전자선 증착율에 따른 PDP 방전 특성 분석)

  • Kim, Yong-Jae;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.716-719
    • /
    • 2007
  • The effects of the evaporation rate of MgO films using an electron beam on the MgO properties and the discharge characteristics of a plasma display panel (PDP) were investigated and analyzed. MgO films were deposited with the various MgO evaporation rates. The MgO properties such as the crystal orientation, the surface roughness, and the film structure were inspected using XRD (X-ray diffraction), AFM (atomic force microscopy). From the experiments and Paschen law, the maximum value of the secondary electron emission coefficient $({\gamma})$ was obtained at the evaporation rate of $5{\AA}/sec$. The XRD results and cathode-luminescence (CL) spectra show the ${\gamma}$ values are correlated with F/F+ centers of the molecular structure of MgO films. The minimum firing voltage and the maximum luminous efficiency were obtained at an evaporation rate of $5{\AA}/sec$. In the MgO film deposited at $5{\AA}/sec$, the (200) orientation and F+ center were most intensive.

Droplet Evaporation on Surf aces of Various Wettabilities (다양한 습윤성 표면 위에서의 액적 증발)

  • Song, Hyun-Soo;Lee, Yong-Ky;Jin, Song-Wan;Kim, Ho-Young;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF

Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating (증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구)

  • 정재인;정우철;손영호;이득진;박성렬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 2000
  • Al films on cold-rolled steel sheet have been prepared by vacuum evaporation and arc-induced ion plating, respectively, and the evaporation rate and vapor distribution (thickness distribution over the substrate) have been investigated according to deposition conditions. The arc-induced ion plating (AIIP) method have been employed, which makes use of arc-like discharge current induced by ionization electrode located near the evaporation source. The AIIP takes advantage of high ionization rate compared with conventional ion plating, and can be carried out at low pressure of less than $10^{-4}$ torr. Very high evaporation rate of more than 2.0 mu\textrm{m}$/min could be achieved for Al evaporation using alumina liner by electron beam evaporation. The geometry factor n for the $cos^{n/\phi}$ vapor distribution, which affects the thickness distribution of films at the substrate turned out to be around 1 for vacuum evaporation, while it features around 2 or higher for ion plating. For the ion plated films, it has been found that the ionization condition and substrate bias are the main parameters to affect the thickness distribution of the films.

  • PDF