자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)
-
- 지능정보연구
- /
- 제27권1호
- /
- pp.191-207
- /
- 2021
오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.
Personalized services directly and indirectly acquire personal data, in part, to provide customers with higher-value services that are specifically context-relevant (such as place and time). Information technologies continue to mature and develop, providing greatly improved performance. Sensory networks and intelligent software can now obtain context data, and that is the cornerstone for providing personalized, context-specific services. Yet, the danger of overflowing personal information is increasing because the data retrieved by the sensors usually contains privacy information. Various technical characteristics of context-aware applications have more troubling implications for information privacy. In parallel with increasing use of context for service personalization, information privacy concerns have also increased such as an unrestricted availability of context information. Those privacy concerns are consistently regarded as a critical issue facing context-aware personalized service success. The entire field of information privacy is growing as an important area of research, with many new definitions and terminologies, because of a need for a better understanding of information privacy concepts. Especially, it requires that the factors of information privacy should be revised according to the characteristics of new technologies. However, previous information privacy factors of context-aware applications have at least two shortcomings. First, there has been little overview of the technology characteristics of context-aware computing. Existing studies have only focused on a small subset of the technical characteristics of context-aware computing. Therefore, there has not been a mutually exclusive set of factors that uniquely and completely describe information privacy on context-aware applications. Second, user survey has been widely used to identify factors of information privacy in most studies despite the limitation of users' knowledge and experiences about context-aware computing technology. To date, since context-aware services have not been widely deployed on a commercial scale yet, only very few people have prior experiences with context-aware personalized services. It is difficult to build users' knowledge about context-aware technology even by increasing their understanding in various ways: scenarios, pictures, flash animation, etc. Nevertheless, conducting a survey, assuming that the participants have sufficient experience or understanding about the technologies shown in the survey, may not be absolutely valid. Moreover, some surveys are based solely on simplifying and hence unrealistic assumptions (e.g., they only consider location information as a context data). A better understanding of information privacy concern in context-aware personalized services is highly needed. Hence, the purpose of this paper is to identify a generic set of factors for elemental information privacy concern in context-aware personalized services and to develop a rank-order list of information privacy concern factors. We consider overall technology characteristics to establish a mutually exclusive set of factors. A Delphi survey, a rigorous data collection method, was deployed to obtain a reliable opinion from the experts and to produce a rank-order list. It, therefore, lends itself well to obtaining a set of universal factors of information privacy concern and its priority. An international panel of researchers and practitioners who have the expertise in privacy and context-aware system fields were involved in our research. Delphi rounds formatting will faithfully follow the procedure for the Delphi study proposed by Okoli and Pawlowski. This will involve three general rounds: (1) brainstorming for important factors; (2) narrowing down the original list to the most important ones; and (3) ranking the list of important factors. For this round only, experts were treated as individuals, not panels. Adapted from Okoli and Pawlowski, we outlined the process of administrating the study. We performed three rounds. In the first and second rounds of the Delphi questionnaire, we gathered a set of exclusive factors for information privacy concern in context-aware personalized services. The respondents were asked to provide at least five main factors for the most appropriate understanding of the information privacy concern in the first round. To do so, some of the main factors found in the literature were presented to the participants. The second round of the questionnaire discussed the main factor provided in the first round, fleshed out with relevant sub-factors. Respondents were then requested to evaluate each sub factor's suitability against the corresponding main factors to determine the final sub-factors from the candidate factors. The sub-factors were found from the literature survey. Final factors selected by over 50% of experts. In the third round, a list of factors with corresponding questions was provided, and the respondents were requested to assess the importance of each main factor and its corresponding sub factors. Finally, we calculated the mean rank of each item to make a final result. While analyzing the data, we focused on group consensus rather than individual insistence. To do so, a concordance analysis, which measures the consistency of the experts' responses over successive rounds of the Delphi, was adopted during the survey process. As a result, experts reported that context data collection and high identifiable level of identical data are the most important factor in the main factors and sub factors, respectively. Additional important sub-factors included diverse types of context data collected, tracking and recording functionalities, and embedded and disappeared sensor devices. The average score of each factor is very useful for future context-aware personalized service development in the view of the information privacy. The final factors have the following differences comparing to those proposed in other studies. First, the concern factors differ from existing studies, which are based on privacy issues that may occur during the lifecycle of acquired user information. However, our study helped to clarify these sometimes vague issues by determining which privacy concern issues are viable based on specific technical characteristics in context-aware personalized services. Since a context-aware service differs in its technical characteristics compared to other services, we selected specific characteristics that had a higher potential to increase user's privacy concerns. Secondly, this study considered privacy issues in terms of service delivery and display that were almost overlooked in existing studies by introducing IPOS as the factor division. Lastly, in each factor, it correlated the level of importance with professionals' opinions as to what extent users have privacy concerns. The reason that it did not select the traditional method questionnaire at that time is that context-aware personalized service considered the absolute lack in understanding and experience of users with new technology. For understanding users' privacy concerns, professionals in the Delphi questionnaire process selected context data collection, tracking and recording, and sensory network as the most important factors among technological characteristics of context-aware personalized services. In the creation of a context-aware personalized services, this study demonstrates the importance and relevance of determining an optimal methodology, and which technologies and in what sequence are needed, to acquire what types of users' context information. Most studies focus on which services and systems should be provided and developed by utilizing context information on the supposition, along with the development of context-aware technology. However, the results in this study show that, in terms of users' privacy, it is necessary to pay greater attention to the activities that acquire context information. To inspect the results in the evaluation of sub factor, additional studies would be necessary for approaches on reducing users' privacy concerns toward technological characteristics such as highly identifiable level of identical data, diverse types of context data collected, tracking and recording functionality, embedded and disappearing sensor devices. The factor ranked the next highest level of importance after input is a context-aware service delivery that is related to output. The results show that delivery and display showing services to users in a context-aware personalized services toward the anywhere-anytime-any device concept have been regarded as even more important than in previous computing environment. Considering the concern factors to develop context aware personalized services will help to increase service success rate and hopefully user acceptance for those services. Our future work will be to adopt these factors for qualifying context aware service development projects such as u-city development projects in terms of service quality and hence user acceptance.