• Title/Summary/Keyword: Evaluation of fire resistant performance

Search Result 31, Processing Time 0.03 seconds

An Experimental Study on the Evaluation of the Fire-Resistance Performance of a Spray-Applied Rectangular Steel Structure (뿜칠피복 각형 강관의 내화성능 평가를 위한 실험적 연구)

  • Ok, Chi-Yeol;Kim, Jae-Jun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • Structures of steel frame buildings getting vary depending on the development of construction technology. Fire-resistant steel beams and Columns accredited by accreditation bodies from the performance of various fire-resistant coating is applied to the current pillar method is most H-beams. H-beam has been proposed a non-load test specifications in the relevant regulations, its scope of accreditation to be granted without limitation of size H-beams from the performance of the test specification. However, in the case of the rectangular steel structure is to check its performance and to a separate one of the receive acknowledge and so take advantage of the cross-sectional shape factor in this study to test the performance of the fire-resistant structure proposed for standard test specimen.

Evaluation of Fire-Resistant Performance for Polypropylene Fiber-Mixed Mortar (폴리프로필렌 섬유 혼입 모르타르의 내화성능 평가)

  • Lee, Chan-Young;Shim, Jae-Won;Ahn, Tae-Song;Lim, Chae-Hyeok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.473-476
    • /
    • 2006
  • In this study, evaluation of fire-resistant performance for polypropylene fiber-mixed mortar was performed to establish specification for stability of tunnel structure against fire afterward. In the fire-resistant performance test with mix proportion of polypropylene fiber, cracks were observed for mortar under 0.15% of fiber content, but micro-cracks were remarkably reduced for mortar more than 0.2% of fiber content. From the results, we are concluded that optimal mix proportion of polypropylene fiber is $0.20{\sim}0.25%$.

  • PDF

Evaluation of Fire-Resistant Performance for Tunnel Lining Concrete with Heating Temperature-Time Curves (시간가열온도곡선에 따른 터널라이닝 콘크리트의 내화성능 평가)

  • Lee, Chan-Young;Shim, Jae-Won;Ahn, Tae-Song;Lim, Chae-Hyeok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.477-480
    • /
    • 2006
  • In this study, evaluation of fire-resistant performance for polypropylene fiber-mixed mortar was performed to establish specification for stability of tunnel structure against fire afterward. In the fire-resistant performance test with mix proportion of polypropylene fiber, cracks were observed for mortar under 0.15% of fiber content, but micro-cracks were remarkably reduced for mortar more than 0.2% of fiber content. From the results, we are concluded that optimal mix proportion of polypropylene fiber is $0.20{\sim}0.25%$.

  • PDF

Evaluation on the Mechanical Properties of Fire Resistant Steels at High Temperature Conditions with Manufacturing Processes (제조 방식에 따른 건축용 내화강재의 고온 시 기계적 특성 평가)

  • Kwon, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.181-190
    • /
    • 2007
  • A fire-resistant steel with enhanced load-bearing capacity has been developed to enable structural elements such as columns and beams withstand exposure to severe fire conditions. To precisely evaluate the fire-resistant performance of structural elements that compose fire-resistant steels, mechanical properties such as yield strength and elastic modulus are essential. To obtain the mechanical database of fire-resistant steels at high temperatures, tensile tests at high temperatures were conducted on steels of two kinds of thicknesses. The results showed that the thickness difference could not affect the mechanical properties at a high temperature.

The Evaluation of Fire-Resistant Performance of the Non-bearing Steel Wall Using Fire Resistant Glass (내화유리를 적용한 강재 유리벽의 내화성능 평가)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Yang, Seung-Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.72-81
    • /
    • 2018
  • Fireproof structures using concrete, built-up panels and dry walls are usually used in walls inside fire compartments. However, demand for glass walls is emerging due to increase in interest in visibility and external appearance. In this study on steel fire resistance walls using insulation glass, fire resistance tests and performance evaluations were conducted on 60 minute fire resistance walls and exterior walls which could be applied to interior fire compartments and 90 minute fire resistance walls which could be applied to curtain walls. According to the tests, the specimens satisfied the required fire resistance performance. The finite element analysis was conducted after the tests to evaluate the fire resistance performance of the glass walls. The analysis results showed that the preliminary evaluation of fire resistance performance would be feasible.

A Study on Fire Prevention Capability Performance Evaluation of the Phosphate Flame Retardant Honeycomb Core (인계 난연 허니컴 코아의 방화성능평가에 관한 연구)

  • Moon, Sung-Woong;Lim, Kyung-Bum;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.72-77
    • /
    • 2010
  • Honeycomb core structure with its excellent stiffness and strength is being utilized in many fields such as interior building material. Because it is inexpensive and renewable, honeycomb paper production is economically and environmentally helpful. However, the paper needs to be fireproofed because it is vulnerable to fire. In this study, we have undergone the performance evaluation process of the honeycomb paper which is widely used as interior material of a fire door and packing material. Four kinds of honeycomb (a honeycomb made of flame-resistant paper; a honeycomb attached with conventional flame-resistant film made in the laboratory; honeycomb impregnated with flame retardant; a honeycomb attached with flame-resistant film after impregnating fire retardant) were used in the study to compare the fire retardant performance. As a result, the honeycomb with impregnated flame retardant showed the highest performance. The flame-resistant film was effective in delaying the igniting time but had a negative effect on the rate of heat and smoke production.

An Evaluation of Fire Resistance and Mock-up Test of the Alumino-silicate Fire Resistant Board (알루미노 실리케이트계 내화보드의 내화성능 및 현장적용성 평가)

  • Kim, Doo-Ho;Park, Dong-Cheol;Kim, Woo-Jae;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.43-47
    • /
    • 2010
  • The use of high-strength concrete has increased for its excellent structural stability as buildings become higher and bigger than ever before in Korea and overseas recently. The functional requirement of building materials has also been bolstered so for the high -performance, high-quality construction materials to be used more extensively. However, the internal structure of the high-strength concrete is very dense so spalling can be caused during fire. The spalling in turn can cause critical structural damages followed by the fatal consequences, demolition of the building. Therefore, ensuring fire safety for high-rise buildings is assumed to be urgent. Alumino-silicate fire resistant board producing technology has been developed in situations that new materials with excellent fire resistance and easy installation has been sought. The alumino-silicate fire resistant board turned out to exhibit not only fire resistance and excellent physical and dynamical characteristics but also excellent onsite applicability and easy process and transportation after completing Mock-up test. Its excellence as a high-performance building materials was proven.

  • PDF

A Study on Fire Resistance Performance Evaluation for Field Application of Ultra-High Strength Concrete (초고강도 내화 콘크리트의 현장 적용을 위한 내화성능 평가에 관한 연구)

  • Baek, Young-Woon;Yuk, Tae-Won;Park, Dong-Soo;Kim, Han-Sol;Lee, Hang-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.41-42
    • /
    • 2023
  • The physical performance of high-strength concrete deteriorates when exposed to high temperatures such as fire. In particular, in the case of ultra-high-strength concrete, there is a high possibility of explosion due to internal water pressure and thermal expansion due to the tight internal structure. In this paper, a fire resistance certification test was conducted for field application of ultra-high-strength fire-resistant concrete, and the fire resistance performance (temperature rise of main rebar) was compared according to the structural concrete cover thickness. As a result, when the covering thickness was 40 mm, three structures did not meet the certification standards, and when the covering thickness was 50 mm, all structures met the fire resistance certification standards.

  • PDF