• Title/Summary/Keyword: Evaluation of Information Systems(IS) Quality

Search Result 439, Processing Time 0.027 seconds

A Study on the Performance of Cloud-based VDI Adoption: Comparing between IS administrators and business users (클라우드 기반 VDI 도입 성과에 관한 연구 - 시스템 관리자와 일반 사용자의 비교를 중심으로 -)

  • Kim, Il-Han;Kwon, Sun-Dong
    • Management & Information Systems Review
    • /
    • v.37 no.2
    • /
    • pp.149-167
    • /
    • 2018
  • The purpose of this study is to analyze the performance of Virtual Desktop Infrastructure(VDI) adoption. VDI performance was measured by IS manager (system quality, security, and managerial operation) and business user (usability, access, and user satisfaction). The survey questionnaires were developed for measuring VDI performance. 84 data samples were collected from the companies that had adopted cloud-based VDI. This research model was verified by Smart-PLS and SPSS. The research findings were as follows: First, the companies using VDI experienced actual performance, but they did not attain their expectation. Second, as results of comparing between IS managers and business users, IS administrators had considerably higher performance than business users, which indicates that there were big differences in performance perception among users. Compared with prior research such as technical trend, system construction, and performance improvement, this study has the following implications. First, by comparing the expected performance with the actual performance of the companies that have implemented and operating VDI, it was suggested how a company that wants to adopt VDI can manage the expectation level of VDI and achieve higher actual performance. Second, because the perception of VDI performance differs between business users and system managers, it is meaningful that a fair evaluation of VDI performance requires a balanced consideration of business users and system managers.

A Dynamic Management Method for FOAF Using RSS and OLAP cube (RSS와 OLAP 큐브를 이용한 FOAF의 동적 관리 기법)

  • Sohn, Jong-Soo;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.39-60
    • /
    • 2011
  • Since the introduction of web 2.0 technology, social network service has been recognized as the foundation of an important future information technology. The advent of web 2.0 has led to the change of content creators. In the existing web, content creators are service providers, whereas they have changed into service users in the recent web. Users share experiences with other users improving contents quality, thereby it has increased the importance of social network. As a result, diverse forms of social network service have been emerged from relations and experiences of users. Social network is a network to construct and express social relations among people who share interests and activities. Today's social network service has not merely confined itself to showing user interactions, but it has also developed into a level in which content generation and evaluation are interacting with each other. As the volume of contents generated from social network service and the number of connections between users have drastically increased, the social network extraction method becomes more complicated. Consequently the following problems for the social network extraction arise. First problem lies in insufficiency of representational power of object in the social network. Second problem is incapability of expressional power in the diverse connections among users. Third problem is the difficulty of creating dynamic change in the social network due to change in user interests. And lastly, lack of method capable of integrating and processing data efficiently in the heterogeneous distributed computing environment. The first and last problems can be solved by using FOAF, a tool for describing ontology-based user profiles for construction of social network. However, solving second and third problems require a novel technology to reflect dynamic change of user interests and relations. In this paper, we propose a novel method to overcome the above problems of existing social network extraction method by applying FOAF (a tool for describing user profiles) and RSS (a literary web work publishing mechanism) to OLAP system in order to dynamically innovate and manage FOAF. We employed data interoperability which is an important characteristic of FOAF in this paper. Next we used RSS to reflect such changes as time flow and user interests. RSS, a tool for literary web work, provides standard vocabulary for distribution at web sites and contents in the form of RDF/XML. In this paper, we collect personal information and relations of users by utilizing FOAF. We also collect user contents by utilizing RSS. Finally, collected data is inserted into the database by star schema. The system we proposed in this paper generates OLAP cube using data in the database. 'Dynamic FOAF Management Algorithm' processes generated OLAP cube. Dynamic FOAF Management Algorithm consists of two functions: one is find_id_interest() and the other is find_relation (). Find_id_interest() is used to extract user interests during the input period, and find-relation() extracts users matching user interests. Finally, the proposed system reconstructs FOAF by reflecting extracted relationships and interests of users. For the justification of the suggested idea, we showed the implemented result together with its analysis. We used C# language and MS-SQL database, and input FOAF and RSS as data collected from livejournal.com. The implemented result shows that foaf : interest of users has reached an average of 19 percent increase for four weeks. In proportion to the increased foaf : interest change, the number of foaf : knows of users has grown an average of 9 percent for four weeks. As we use FOAF and RSS as basic data which have a wide support in web 2.0 and social network service, we have a definite advantage in utilizing user data distributed in the diverse web sites and services regardless of language and types of computer. By using suggested method in this paper, we can provide better services coping with the rapid change of user interests with the automatic application of FOAF.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

A Contemplation on Measures to Advance Logistics Centers (물류센터 선진화를 위한 발전 방안에 대한 소고)

  • Sun, Il-Suck;Lee, Won-Dong
    • Journal of Distribution Science
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • As the world becomes more globalized, business competition becomes fiercer, while consumers' needs for less expensive quality products are on the increase. Business operations make an effort to secure a competitive edge in costs and services, and the logistics industry, that is, the industry operating the storing and transporting of goods, once thought to be an expense, begins to be considered as the third cash cow, a source of new income. Logistics centers are central to storage, loading and unloading of deliveries, packaging operations, and dispensing goods' information. As hubs for various deliveries, they also serve as a core infrastructure to smoothly coordinate manufacturing and selling, using varied information and operation systems. Logistics centers are increasingly on the rise as centers of business supply activities, growing beyond their previous role of primarily storing goods. They are no longer just facilities; they have become logistics strongholds that encompass various features from demand forecast to the regulation of supply, manufacturing, and sales by realizing SCM, taking into account marketability and the operation of service and products. However, despite these changes in logistics operations, some centers have been unable to shed their past roles as warehouses. For the continuous development of logistics centers, various measures would be needed, including a revision of current supporting policies, formulating effective management plans, and establishing systematic standards for founding, managing, and controlling logistics centers. To this end, the research explored previous studies on the use and effectiveness of logistics centers. From a theoretical perspective, an evaluation of the overall introduction, purposes, and transitions in the use of logistics centers found issues to ponder and suggested measures to promote and further advance logistics centers. First, a fact-finding survey to establish demand forecast and standardization is needed. As logistics newspapers predicted that after 2012 supply would exceed demand, causing rents to fall, the business environment for logistics centers has faltered. However, since there is a shortage of fact-finding surveys regarding actual demand for domestic logistic centers, it is hard to predict what the future holds for this industry. Accordingly, the first priority should be to get to the essence of the current market situation by conducting accurate domestic and international fact-finding surveys. Based on those, management and evaluation indicators should be developed to build the foundation for the consistent advancement of logistics centers. Second, many policies for logistics centers should be revised or developed. Above all, a guideline for fair trade between a shipper and a commercial logistics center should be enacted. Since there are no standards for fair trade between them, rampant unfair trades according to market practices have brought chaos to market orders, and now the logistics industry is confronting its own difficulties. Therefore, unfair trade cases that currently plague logistics centers should be gathered by the industry and fair trade guidelines should be established and implemented. In addition, restrictive employment regulations for foreign workers should be eased, and logistics centers should be charged industry rates for the use of electricity. Third, various measures should be taken to improve the management environment. First, we need to find out how to activate value-added logistics. Because the traditional purpose of logistics centers was storage and loading/unloading of goods, their profitability had a limit, and the need arose to find a new angle to create a value added service. Logistic centers have been perceived as support for a company's storage, manufacturing, and sales needs, not as creators of profits. The center's role in the company's economics has been lowering costs. However, as the logistics' management environment spiraled, along with its storage purpose, developing a new feature of profit creation should be a desirable goal, and to achieve that, value added logistics should be promoted. Logistics centers can also be improved through cost estimation. In the meantime, they have achieved some strides in facility development but have still fallen behind in others, particularly in management functioning. Lax management has been rampant because the industry has not developed a concept of cost estimation. The centers have since made an effort toward unification, standardization, and informatization while realizing cost reductions by establishing systems for effective management, but it has been hard to produce profits. Thus, there is an urgent need to estimate costs by determining a basic cost range for each division of work at logistics centers. This undertaking can be the first step to improving the ineffective aspects of how they operate. Ongoing research and constant efforts have been made to improve the level of effectiveness in the manufacturing industry, but studies on resource management in logistics centers are hardly enough. Thus, a plan to calculate the optimal level of resources necessary to operate a logistics center should be developed and implemented in management behavior, for example, by standardizing the hours of operation. If logistics centers, shippers, related trade groups, academic figures, and other experts could launch a committee to work with the government and maintain an ongoing relationship, the constraint and cooperation among members would help lead to coherent development plans for logistics centers. If the government continues its efforts to provide financial support, nurture professional workers, and maintain safety management, we can anticipate the continuous advancement of logistics centers.

  • PDF

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

A Comparative Study on Communication of Agricultural Innovation (농업 기술 전파 커뮤니케이션에 관한 비교 연구)

  • Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.121-136
    • /
    • 2000
  • This study reports on a comparison between the Korean diffusion of agricultural innovation or extension service and the cooperative extension service in the United States of America. It focuses on relevant differences between the two systems and provides recommendation for improvement of the Korean system to insure success in important areas related to the diffusion of agricultural innovations. After a comparative study on diffusion of innovations it is clear that: in order to have a productive agriculture that makes effective and efficient use of natural resources and helps achieve sustainability goals, a mechanism that delivers knowledge to agricultural communities must be established and maintained. This mechanism is clearly an agricultural extension service that is cooperatively funded by federal, state and local governments and that insures participation of constituents in the process of establishing priorities and evaluating achievements. The success of US agriculture, the most productive in the world, is to a large degree to the Cooperative Extension Service. Based on the results of this study and the differences of the United States and Korea, the following recommendations should be emphasized for more effective communication for agricultural innovation and rural development in Korea: 1) In order to insure that extension educators are high caliber professional individuals, it is important to establish a system that nationally recognizes these individuals as such, and that provides a professional development path. 2) The results of the decision of transfer of extension educators to local governments has not yielded positive outcomes, especially in terms of professional status. It is clearly demonstrable that valuable professionals are leaving the service, that local governments do not have the will and resources to implement a successful extension program. 3) Because of the critical importance of diffusing innovations to agricultural producers in order to insure and quality and steady food supply, it is of critical importance that these issues be addressed before the extension service is further deteriorated. Given the cement situation, it is clear that the extension service should become nationally supported again in cooperation with local and state governments and that extension professionals be given appropriate rank at the national level, commesurate with their peers in research and teaching. 4) The common current committee practice of lengthy reporting and short discussion needs to be changed to one that results in char, brief and substantive action oriented goals. Joint participation by researchers, extension educators and farmers should be encouraged in planning, implementation and evaluation of communication for agricultural innovations. Roles and functions of committees for institutional cooperation, and or agricultural extension committees should be enlarged. 5) Extension educators should be encouraged to adopt new communication technologies to improve their diffusion of innovations methods. Agricultural institutions and organizations should be encouraged to adopt farmer-first and or client-oriented approach in agricultural extension and diffusion of agricultural technologies. The number, complexity and rapid change of information in agricultural extension require the development of a computer based information and report system to support agricultural extension. 6) To facilitate and expand the further development of communication for agricultural innovation and rural development, agricultural communication programs in universities especially in colleges of agriculture and life sciences. 7) To strengthening the sense of national and social responsibility communication for agricultural innovation and rural development among students in agricultural colleges and universities through participation in learning activities by proactive recruitment. 8) To establish and reinforce a policy that insures participation in communication for agricultural innovation and regal development activities. 9) To improve further development of communication for agricultural innovation and rural development in Korea, more research activities should be encouraged.

  • PDF

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment (창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로)

  • Kim, Jin-Woo;Yang, Seung-Hwa;Lim, Seong-Taek;Lee, In-Seong
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

Clinical Applications and Efficacy of Korean Ginseng (고려인삼의 주요 효능과 그 임상적 응용)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.111-131
    • /
    • 2002
  • Korean ginseng (Panax ginseng C.A. Meyer) received a great deal of attention from the Orient and West as a tonic agent, health food and/or alternative herbal therapeutic agent. However, controversy with respect to scientific evidence on pharmacological effects especially, evaluation of clinical efficacy and the methodological approach still remains to be solved. Author reviewed those articles published since 1980 when pharmacodynamic studies on ginseng have intensively started. Special concern was paid on metabolic disorders including diabetes mellitus, circulatory disorders, malignant tumor, sexual dysfunction, and physical and mental performance to give clear information to those who are interested in pharmacological study of ginseng and to promote its clinical use. With respect to chronic diseases such as diabetes mellitus, atherosclerosis, high blood pressure, malignant disorders, and sexual disorders, it seems that ginseng plays preventive and restorative role rather than therapeutics. Particularly, ginseng plays a significant role in ameliorating subjective symptoms and preventing quality of life from deteriorating by long term exposure of chemical therapeutic agents. Also it seems that the potency of ginseng is mild, therefore it could be more effective when used concomitantly with conventional therapy. Clinical studies on the tonic effect of ginseng on work performance demonstrated that physical and mental dysfunction induced by various stresses are improved by increasing adaptability of physical condition. However, the results obtained from clinical studies cannot be mentioned in the indication, which are variable upon the scientist who performed those studies. In this respect, standardized ginseng product and providing planning of the systematic clinical research in double-blind randomized controlled trials are needed to assess the real efficacy for proposing ginseng indication. Pharmacological mode of action of ginseng has not yet been fully elucidated. Pharmacodynamic and pharmacokinetic researches reveal that the role of ginseng not seem to be confined to a given single organ. It has been known that ginseng plays a beneficial role in such general organs as central nervous, endocrine, metabolic, immune systems, which means ginseng improves general physical and mental conditons. Such multivalent effect of ginseng can be attributed to the main active component of ginseng,ginsenosides or non-saponin compounds which are also recently suggested to be another active ingredients. As is generally the similar case with other herbal medicines, effects of ginseng cannot be attributed as a given single compound or group of components. Diversified ingredients play synergistic or antagonistic role each other and act in harmonized manner. A few cases of adverse effect in clinical uses are reported, however, it is not observed when standardized ginseng products are used and recommended dose was administered. Unfavorable interaction with other drugs has also been suggested, which the information on the products and administered dosage are not available. However, efficacy, safety, interaction or contraindication with other medicines has to be more intensively investigated in order to promote clinical application of ginseng. For example, daily recommended doses per day are not agreement as 1-2g in the West and 3-6 g in the Orient. Duration of administration also seems variable according to the purpose. Two to three months are generally recommended to feel the benefit but time- and dose-dependent effects of ginseng still need to be solved from now on. Furthermore, the effect of ginsenosides transformed by the intestinal microflora, and differential effect associated with ginsenosides content and its composition also should be clinically evaluated in the future. In conclusion, the more wide-spread use of ginseng as a herbal medicine or nutraceutical supplement warrants the more rigorous investigations to assess its effacy and safety. In addition, a careful quality control of ginseng preparations should be done to ensure an acceptable standardization of commercial products.