• Title/Summary/Keyword: Evaluation models

Search Result 3,812, Processing Time 0.027 seconds

Effectiveness of a Wave Resonator under Short-period Waves and Solitary Waves (공진장치를 이용한 단주기파랑과 고립파의 제어)

  • Lee, Kwang Ho;Jeong, Seong Ho;Jeong, Jin Woo;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.89-100
    • /
    • 2010
  • The performance evaluation of a conventional Wave Resonator at the entrance of harbors against solitary wave has been performed using 3D numerical wave flume. A wave resonator has been designed for the attenuation of the transmitted wave energy by trapping the short periodic incident waves only. In this study, however, the controlled performance of the wave resonator by its various widths has been numerically investigated for solitary waves. Source distribution method based on the Green function and the 3D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) using 3D numerical wave flume were used for the short-periodic waves and the solitary waves, respectively, and these models were verified through the comparisons with the previous experimental and numerical results by other researchers. It was confirmed that the wave resonator is effective enough to control the solitary waves as well as the periodic waves when it compares with the case of no resonance system. Further, it was found that there is the optimal width of a wave resonator to attenuate the target solitary waves.

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.

A Study on the Prediction Model for Bioactive Components of Cnidium officinale Makino according to Climate Change using Machine Learning (머신러닝을 이용한 기후변화에 따른 천궁 생리 활성 성분 예측 모델 연구)

  • Hyunjo Lee;Hyun Jung Koo;Kyeong Cheol Lee;Won-Kyun Joo;Cheol-Joo Chae
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.93-101
    • /
    • 2023
  • Climate change has emerged as a global problem, with frequent temperature increases, droughts, and floods, and it is predicted that it will have a great impact on the characteristics and productivity of crops. Cnidium officinale is used not only as traditionally used herbal medicines, but also as various industrial raw materials such as health functional foods, natural medicines, and living materials, but productivity is decreasing due to threats such as continuous crop damage and climate change. Therefore, this paper proposes a model that can predict the physiologically active ingredient index according to the climate change scenario of Cnidium officinale, a representative medicinal crop vulnerable to climate change. In this paper, data was first augmented using the CTGAN algorithm to solve the problem of data imbalance in the collection of environment information, physiological reactions, and physiological active ingredient information. Column Shape and Column Pair Trends were used to measure augmented data quality, and overall quality of 88% was achieved on average. In addition, five models RF, SVR, XGBoost, AdaBoost, and LightBGM were used to predict phenol and flavonoid content by dividing them into ground and underground using augmented data. As a result of model evaluation, the XGBoost model showed the best performance in predicting the physiological active ingredients of the sacrum, and it was confirmed to be about twice as accurate as the SVR model.

Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification (넙치 질병 증상 분류를 위한 객체 탐지 딥러닝 모델 성능 평가)

  • Kyung won Cho;Ran Baik;Jong Ho Jeong;Chan Jin Kim;Han Suk Choi;Seok Won Jung;Hvun Seung Son
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.71-84
    • /
    • 2023
  • Paralichthys olivaceus accounts for a large proportion, accounting for more than half of Korea's aquaculture industry. However, about 25-30% of the total breeding volume throughout the year occurs due to diseases, which has a very bad impact on the economic feasibility of fish farms. For the economic growth of Paralichthys olivaceus farms, it is necessary to quickly and accurately diagnose disease symptoms by automating the diagnosis of Paralichthys olivaceus diseases. In this study, we create training data using innovative data collection methods, refining data algorithms, and techniques for partitioning dataset, and compare the Paralichthys olivaceus disease symptom detection performance of four object detection deep learning models(such as YOLOv8, Swin, Vitdet, MvitV2). The experimental findings indicate that the YOLOv8 model demonstrates superiority in terms of average detection rate (mAP) and Estimated Time of Arrival (ETA). If the performance of the AI model proposed in this study is verified, Paralichthys olivaceus farms can diagnose disease symptoms in real time, and it is expected that the productivity of the farm will be greatly improved by rapid preventive measures according to the diagnosis results.

Detection and Grading of Compost Heap Using UAV and Deep Learning (UAV와 딥러닝을 활용한 야적퇴비 탐지 및 관리등급 산정)

  • Miso Park;Heung-Min Kim;Youngmin Kim;Suho Bak;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.33-43
    • /
    • 2024
  • This research assessed the applicability of the You Only Look Once (YOLO)v8 and DeepLabv3+ models for the effective detection of compost heaps, identified as a significant source of non-point source pollution. Utilizing high-resolution imagery acquired through Unmanned Aerial Vehicles(UAVs), the study conducted a comprehensive comparison and analysis of the quantitative and qualitative performances. In the quantitative evaluation, the YOLOv8 model demonstrated superior performance across various metrics, particularly in its ability to accurately distinguish the presence or absence of covers on compost heaps. These outcomes imply that the YOLOv8 model is highly effective in the precise detection and classification of compost heaps, thereby providing a novel approach for assessing the management grades of compost heaps and contributing to non-point source pollution management. This study suggests that utilizing UAVs and deep learning technologies for detecting and managing compost heaps can address the constraints linked to traditional field survey methods, thereby facilitating the establishment of accurate and effective non-point source pollution management strategies, and contributing to the safeguarding of aquatic environments.

A Study on DID-based Vehicle Component Data Collection Model for EV Life Cycle Assessment (전기차 전과정평가를 위한 DID 기반 차량부품 데이터수집 모델 연구)

  • Jun-Woo Kwon;Soojin Lee;Jane Kim;Seung-Hyun Seo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.309-318
    • /
    • 2023
  • Recently, each country has been moving to introduce an LCA (Life Cycle Assessment) to regulate greenhouse gas emissions. The LCA is a mean of measuring and evaluating greenhouse gas emissions generated over the entire life cycle of a vehicle. Reliable data for each electric vehicle component is needed to increase the reliability of the LCA results. To this end, studies on life cycle evaluation models using blockchain technology have been conducted. However, in the existing model, key product information is exposed to other participants. And each time parts data information is updated, it must be recorded in the blockchain ledger in the form of a transaction, which is inefficient. In this paper, we proposed a DID(Decentralized Identity)-based data collection model for LCA to collect vehicle component data and verify its validity effectively. The proposed model increases the reliability of the LCA by ensuring the validity and integrity of the collected data and verifying the source of the data. The proposed model guarantees the validity and integrity of collected data. As only user authentication information is shared on the blockchain ledger, the model prevents indiscriminate exposure of data and efficiently verifies and updates the source of data.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation

  • Heera Yoen;Roh-Eul Yoo;Seung Hong Choi;Eunkyung Kim;Byung-Mo Oh;Dongjin Yang;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.118-130
    • /
    • 2021
  • Objective: This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods: Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results: Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion: BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.